Advertisement

6 Materials, Proton Conductivity and Electrocatalysis in High-Temperature PEM Fuel Cells

  • Maria K. Daletou
  • Joannis Kallitsis
  • Stylianos G. Neophytides
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 51)

Abstract

Fuel cells (FCs) are interesting alternatives to existing power conversion systems since they combine high efficiency with the usage of renewable fuels. Fuel cells can generate power from a fraction of a watt to hundreds of kilowatts and can be used in automotive, stationary or portable applications.1,2,3,4,5,6 A FC is an electrochemical device that converts in a continuous manner the free energy of a chemical reaction into electrical energy (via an electrical current). This galvanic cell consists of an electrolyte (liquid or solid) sandwiched between two porous electrodes. In order to reach desirable amounts of energy power, single cell assemblies can be mechanically compressed across electrically conductive separators to fabricate stacks.

Keywords

Fuel Cell Polymer Electrolyte Doping Level Oxygen Reduction Reaction Proton Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Dresselhaus and I. L. Thomas, Nature 414 (2001) 332.Google Scholar
  2. 2.
    L. Carrette, K.A. Friedrich and U. Stimming, Fuel Cells 1 (2001) 5.Google Scholar
  3. 3.
    B. C. Steele and A. Heinzel, Nature 414 (2001) 345.Google Scholar
  4. 4.
    P. Costamagna and S. Srinivasan, J. Power Sources 102 (2001) 242.Google Scholar
  5. 5.
    S. M. Haile, Acta Mater. 51 (2003) 5981.Google Scholar
  6. 6.
    M. Stoukides, Catal. Rev. Sci. Eng. 42 (2000) 1.Google Scholar
  7. 7.
    C. Yang, P. Costamagna, S. Srinivasan, J. Benziger and A. B. Bocarsly, J. Power Sources 103 (2001) 1.Google Scholar
  8. 8.
    R. Souzy, B. Ameduri, Prog. Polym. Sci. 30 (2005) 644.Google Scholar
  9. 9.
    K. A. Mauritz and R. B. Moore, Chem. Rev. 104 (2004) 4535.Google Scholar
  10. 10.
    Q. Li, R. H. He, J. O. Jensen and N. J. Bjerrum, Chem. Mater. 15 (2003) 4896.Google Scholar
  11. 11.
    J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z.-S. Liu and S. Holdcroft, J. Power Sources 160 (2006) 872.Google Scholar
  12. 12.
    N. P. Brandon, S. Skinner and B. C. H. Steele, Annu. Rev. Mater. Res. 33 (2003) 183.Google Scholar
  13. 13.
    M. Casciola, G. Alberti, M. Sganappa and R. Narducci, J. Power Sources 162 (2006) 141.Google Scholar
  14. 14.
    X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang and J. Shen, J. Power Sources 165 (2007) 739.Google Scholar
  15. 15.
    R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K Kimijima and N. Iwashita, Chem. Rev. 107 (2007) 3904.Google Scholar
  16. 16.
    Z. Q. Qi, C. Z. He and A. Kaufman, J. Power Sources 111 (2002) 239.Google Scholar
  17. 17.
    G. Xiao, Q. Li, H. A. Hjuler and N. J. Bjerrum, J. Electrochem. Soc. 142 (1995) 2890.Google Scholar
  18. 18.
    Q. Li, R. He, J. O. Jensen and N.J. Bjerrum, J. Electrochem. Soc. 150 (2003) A1599.Google Scholar
  19. 19.
    Q. Li, R. He, J. O. Jensen and N. J. Bjerrum, Fuel Cells 4 (2004) 147.Google Scholar
  20. 20.
    Y. L. Ma, J. S. Wainright, M. H. Litt and R. F. Savinell, J. Electrochem. Soc. 151 (2004) A8.Google Scholar
  21. 21.
    Q. Li, J. O. Jensen, R. F. Savinell and N. J. Bjerrum, Prog. Polym. Sci. 34 (2009) 449.Google Scholar
  22. 22.
    L. Zhang and S. Mukerjee, J. Electrochem. Soc. 153 (2006) A1062.Google Scholar
  23. 23.
    G. Hubner and E. J. Roduner, J. Mater. Chem. 9 (1999) 409.Google Scholar
  24. 24.
    M. Rikukawa and K. Sanui, Prog. Polym. Sci. 25 (2000) 1463.Google Scholar
  25. 25.
    M. Schuster, T. Rager, A. Noda, K. D. Kreuer and J. Maier, Fuel Cells 5 (2005) 355.Google Scholar
  26. 26.
    J. Mader, L. Xiao, T. Schmidt and B. C. Benicewicz in Advances in Polymer Science, Special Vol. Fuel Cells, Ed. G. Scherer, Springer-Verlag, 216, 2008, p.63-124.Google Scholar
  27. 27.
    S. M. Aharoni and M. H. Litt, J. Polym. Sci., Part A: Polym. Chem. 12 (1974) 639.Google Scholar
  28. 28.
    R. F. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt and C. Rogers, J. Electrochem. Soc. 141 (1994) L46.Google Scholar
  29. 29.
    J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell and M. H. Litt, J. Electrochem. Soc. 142 (1995) L121.Google Scholar
  30. 30.
    R. Bouchet and E. Siebert, Solid State Ionics 118 (1999) 287.Google Scholar
  31. 31.
    B. Z. Xing and O. Savadogo, J New Mater. Electrochem. Syst. 2 (1999) 95.Google Scholar
  32. 32.
    H. T. Pu, W. H. Meyer and G. Wegner, J. Polym. Sci. 40B (2002) 663.Google Scholar
  33. 33.
    M. Yamada and I. Honma, Polymer 46 (2005) 2986.Google Scholar
  34. 34.
    S. R. Samms, S. Wasmus and R. F. Savinell, J. Electrochem. Soc. 143 (1996) 1225.Google Scholar
  35. 35.
    J. -T. Wang, R. F. Savinell, J. Wainright, M. Litt and H. Yu, Electrochim. Acta 41 (1996) 193.Google Scholar
  36. 36.
    D. Weng, J. S. Wainright, U. Landau, R. F. Savinell, J. Electrochem. Soc. 143 (1996) 1260.Google Scholar
  37. 37.
    Q. Li, R. He, R. W. Berg, H. A. Hjuler, N. J. Bjerrum, Solid State Ionics 168 (2004) 177.Google Scholar
  38. 38.
    C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, U. Mähr, A. Reiche, and Marc Baldus, J. Phys. Chem. B 108 (2004) 13626.Google Scholar
  39. 39.
    L. Xiao, H. Zhang, E. Scanlon, L. S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple and B. C. Benicewicz, Chem. Mater. 17 (2005) 5328.Google Scholar
  40. 40.
    M. Kawahara, J. Morita, M. Rikukawa, K. Sanui and N. Ogata, Electrochim. Acta 45 (2000) 1395.Google Scholar
  41. 41.
    X. Glipa, B. Bonnet, B. Mula, D. Jones and J. Roziere, J. Mater. Chem. 9 (1999) 3045.Google Scholar
  42. 42.
    L. Gubler, D. Kramer, J. Belack, O. Unsal, T. J. Schmidt, G. G. Scherer, J. Electrochem. Soc. 154 (2007) B981.Google Scholar
  43. 43.
    L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.-W. Choe, L. S. Ramanathan, S. Yu and B. C. Benicewicz, Fuel Cells 5 (2005) 287.Google Scholar
  44. 44.
    Q. Li, H. A. Hjuler and N. J. Bjerrum, J. Appl. Electrochem. 31 (2001) 773.Google Scholar
  45. 45.
    G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xu and Z.-G. Shao, J. Power Sources 162 (2006) 547.Google Scholar
  46. 46.
    Q. Li, C. Pan, J. O. Jensen, P. Noye and N. J. Bjerrum, Mater. Chem. 19 (2007) 350.Google Scholar
  47. 47.
    J. A. Kerres, Fuel Cells 5 (2005) 230.Google Scholar
  48. 48.
    J. Hu, H. Zhang, Y. Zhai, G. Liu and B. Yi, Int. J. Hydrogen Energy 31 (2006) 1855.Google Scholar
  49. 49.
    R. A. Gaudiana and R T. Conley, J. Polym. Sci. 7B (1969) 793.Google Scholar
  50. 50.
    S. Yu, L. Xiao and B. C. Benicewicz, Fuel Cells 8 (2008) 156.Google Scholar
  51. 51.
    T. J. Schmidt, J. Baurmeister, J. Power Sources 176 (2008) 428.Google Scholar
  52. 52.
    Y. Zhai, H. Zhang, D. Xing and Z.-G. Shao, J. Power Sources 164 (2007) 126.Google Scholar
  53. 53.
    M. S. Wilson, F. H. Garzon, K. E. Sickafus and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 2872.Google Scholar
  54. 54.
    A. Honji, T. Mori, K. Tamura and Y. Hishinuma, J. Electrochem. Soc. 135 (1988) 355.Google Scholar
  55. 55.
    Y. Zhai, H. Zhang, G. Liu, J. Hu and B Yi, J. Electrochem. Soc. 154 (2007) B72.Google Scholar
  56. 56.
    Z. G. Qi and S. Buelte, J. Power Sources 161 (2006) 1126.Google Scholar
  57. 57.
    A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, F. Maestroni, M. Parachini, L. Garlaschelli and P.P. Righetti, J. Power Sources 160 (2006) 175.Google Scholar
  58. 58.
    S. B. Qing, W. Huang and D. Y. Yan, Eur. Polym. J. 41 (2005) 1589.Google Scholar
  59. 59.
    S. W. Chuang and S. L. C. Hsu, J. Polym. Sci. A 44 (2006) 4508.Google Scholar
  60. 60.
    J. A. Asensio and P. Gomez-Romero, Fuel Cells 5 (2005) 336.Google Scholar
  61. 61.
    J. A. Asensio, S. Borro and P. Gomez-Romero, J. Electrochem. Soc. 151 (2003) A304.Google Scholar
  62. 62.
    H. J. Kim, S. Y. Cho, S. J. An, J. Y. Kim, Y.C. Eun, J. Y. Kim, Macromol. Rapid Commun. 25 (2004) 894.Google Scholar
  63. 63.
    J. A. Asensio, S. Borro and P. Gomez-Romero, J. Polym. Sci., Part A: Polym. Chem. 40 (2002) 3703.Google Scholar
  64. 64.
    C. Wannek, B. Kohnen, H. F. Oetjen, H. Lippert and J. Mergel, Fuel Cells 8 (2008) 87.Google Scholar
  65. 65.
    V. Deimede, G. A. Voyiatzis, J. K. Kallitsis, L. Qingfeng and N. J. Bjerrum, Macromolecules 33 (2000) 7609.Google Scholar
  66. 66.
    C. Hasiotis, Q. Li, V. Deimede, J. K. Kallitsis, C. G. Kontoyannis and N. J. Bjerrum, J. Electrochem. Soc. 148 (2001) A513.Google Scholar
  67. 67.
    C. Hasiotis, V. Deimede and C. Kontoyiannis, Electrochim. Acta 46 (2001) 2401.Google Scholar
  68. 68.
    Q. Li, H. A. Hjuler, C. Hasiotis, J. K. Kallitsis, C. G. Kontoyannis and N. J. Bjerrum, Electrochem. Solid-State Lett. 5 (2002) A125.Google Scholar
  69. 69.
    M. K. Daletou, N. Gourdoupi and J. K. Kallitsis, J. Membr. Sci. 252 (2005) 115.Google Scholar
  70. 70.
    M. K. Daletou, N. Gourdoupi and J. K. Kallitsis, Physical Chemistry 2004, Proceedings of the International Conference on Fundamental and Applied Aspects of Physical Chemistry, 7th, 1 (2004) 287.Google Scholar
  71. 71.
    M. K. Daletou, N. Gourdoupi, J. K. Kallitsis and S. Neophytides, Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005 Istanbul, Turkey.Google Scholar
  72. 72.
    N. Gourdoupi, A. K. Andreopoulou, V. Deimede and J. K. Kallitsis, Chem. Mater. 15 (2003) 5044.Google Scholar
  73. 73.
    E. K. Pefkianakis, V. Deimede, M. K. Daletou, N. Gourdoupi and J. K. Kallitsis, Macromol. Rapid Commun. 26 (2005) 1724.Google Scholar
  74. 74.
    M. Geormezi, V. Deimede, N. Gourdoupi, N. Triantafyllopoulos, S. Neophytides and J. K. Kallitsis, Macromolecules 41 (2008) 9051.Google Scholar
  75. 75.
    N. Mijaura and A. Suzuki, Chem. Rev. 95 (1995) 2457.Google Scholar
  76. 76.
    A.K. Andreopoulou and J K. Kallitsis, Macromolecules 35 (2002) 5808.Google Scholar
  77. 77.
    S.-W. Choi, S. Ohba, Z. Brunovska, K. Hemvichian and H. Ishida, Polym. Degrad. Stab. 91 (2006) 1166.Google Scholar
  78. 78.
    K. Miyatake and A. S. Hay, J. Polym. Sci.: Part A: Polym. Chem. 39 (2001) 1854.Google Scholar
  79. 79.
    L. A. Rusch-Salazar and V. V. Sheares, J. Polym. Sci., Part A: Polym. Chem. 41 (2003) 2277.Google Scholar
  80. 80.
    J. K. Kallitsis, M. Geormezi and S. Neophytides, Polym. Intern. 58 (2009) 1226.Google Scholar
  81. 81.
    N. Gourdoupi, K. Papadimitriou, S. Neophytides and J. K. Kallitsis, Fuel Cells 8 (2008) 200.Google Scholar
  82. 82.
    M. K. Daletou, M. Geormezi, E. K. Pefkianakis, C. Morfopoulou and J.K. Kallitsis, Fuel Cells (2009) In press.Google Scholar
  83. 83.
    B. Kosmala and J. Schauer, J. Appl. Polym. Sci. 85 (2002) 1118.Google Scholar
  84. 84.
    N. Gourdoupi, N. Triantafyllopoulos, V. Deimede, L. Pefkianakis, M. Daletou, S. Neophytides and J. Kallitsis, US patent WO/2008/038162 (2008).Google Scholar
  85. 85.
    H. A. Gasteiger, J. E. Panels and S. G. Yan, J. Power Sources 127 (2004) 162.Google Scholar
  86. 86.
    J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares and G. J. Manjavacas, J. Membr. Sci. 280 (2006) 351.Google Scholar
  87. 87.
    S. Lister and G. McLean, J. Power Sources 130 (2004) 61.Google Scholar
  88. 88.
    J. Lobato, M. A. Rodrigo, J. J. Linares and K. Scott, J. Power Sources 157 (2006) 284.Google Scholar
  89. 89.
    T. Frey and M. Linardi, Electrochim. Acta 50 (2004) 99.Google Scholar
  90. 90.
    V. Mehta and J. S. Cooper, J. Power Sources 114 (2003) 32.Google Scholar
  91. 91.
    X. Li and I. Sabir, Int. J. Hydrogen Energ. 30 (2005) 359.Google Scholar
  92. 92.
    R. He, Q. Li, G. Xiao and N. J. Bjerrum, J. Membr. Sci. 226 (2003) 169.Google Scholar
  93. 93.
    K.-D Kreuer, S. J. Paddison, E. Spohr and M. Schuster, Chem. Rev. 104 (2004) 4637.Google Scholar
  94. 94.
    M. K. Daletou, J. K. Kallitsis G. Voyiatzis and S. Neophytides, J. Membr. Sci. 326 (2009) 76.Google Scholar
  95. 95.
    K. Klinedinst, J. A. S. Bett, J. MacDonald and P. Stonehart, J. Electroanal. Chem. Interfacial Electrochem. 57 (1974) 281.Google Scholar
  96. 96.
    K. E. Gubbins and R. D. Walker, J. Electrochem. Soc. 112 (1989) 469.Google Scholar
  97. 97.
    R. He, L. Qingfeng, A. Bach, J. O. Jensen and N. J. Bjerrum, J. Membrane Sci. 277 (2006) 38.Google Scholar
  98. 98.
    S. C. Kumbharkar, P. B. Karadhar and U. K. Kharul, J. Membrane Sci. 286 (2006) 161.Google Scholar
  99. 99.
    F. Gan and D.-T. Chin, J. Appl. Electrochem. 23 (1993) 452.Google Scholar
  100. 100.
    Z. Liu, J. S. Wainright, M. H. Litt and R. F. Savinell, Electrochim. Acta 51 (2006) 3914.Google Scholar
  101. 101.
    D. I. Macdonald and J. R. Boyack, J. Chem. Eng. Data 14 (1969) 380.Google Scholar
  102. 102.
    I. M. Mal'tseva, M. S. Stakhanova, I. N. Shokin and E. L. Yakhontova, J. Appl. Chem. USSR 41 (1968) 1612.Google Scholar
  103. 103.
    P. E. Egan, Jr. Luff, B. B. Luff and Z. T. Wakefield, J. Phys. Chem. 62 (1958) 1091.Google Scholar
  104. 104.
    P. E. Egan, Jr. Luff and B. B. Luff, J. Phys. Chem. 65 (1961) 523.Google Scholar
  105. 105.
    P. E. Egan, Jr. Luff and B. B. Luff, J. Chem. Eng. Data 7 (1962) 385.Google Scholar
  106. 106.
    J. R. P. Jayakody, S. H. Chung, L. Durantino, H. Zhang, L. Xiao, B. C. Benicewicz and S. G. Greenbaum, J. Electrochem. Soc. 154 (2007) B242.Google Scholar
  107. 107.
    F. H. Stillinger, T. A. Weber and C. W. David, J. Chem. Phys. 76, (1982) 3131.Google Scholar
  108. 108.
    K.-D. Kreuer, Chem. Mater. 8 (1996) 610.Google Scholar
  109. 109.
    K. R. Harris and L. A. Woolf, J. Chem. Soc. Faraday Trans. 76 (1960) 377.Google Scholar
  110. 110.
    J. O'M. Bockris and A. K. N. Reddy in Modern Electrochemistry, Vol. 1, 2nd edition, Plenum Press, New York, 1998.Google Scholar
  111. 111.
    B. E. Conway, J. O'M. Bockris and H. Lynton, J. Chem. Phys. 24 (1956) 834.Google Scholar
  112. 112.
    J. Bernal and R. E. Fowler, J. Chem. Phys. 1 (1933) 515.Google Scholar
  113. 113.
    K. Krynicki, Ch. D. Green and D. W. Sawyer, Faraday Discuss. Chem. Soc. 66 (1978) 199.Google Scholar
  114. 114.
    R. Hausser, G. Maier and F. Z. Noack, Naturforsch 211 (1966) 1410.Google Scholar
  115. 115.
    B. S. Pivova, Polymer 47 (2006) 4194.Google Scholar
  116. 116.
    K. Kwon, T. Y. Kim, D. Y. Yoo, S.-G. Hong and J. O. Park, J. Power Sources 188 (2009) 463.Google Scholar
  117. 117.
    B. R. Scharifker, P. Zelenay and J. O'M. Bockris, J. Electrochem. Soc. 134 (1987) 2714.Google Scholar
  118. 118.
    N. Ito, S. Aoyama, T. Masui, S. Matsumoto, H. Matsumoto and T. Ishihara, J. Power Sources 185 (2008) 922.Google Scholar
  119. 119.
    W. H. Zhu, R. U. Payne, B. J. Tatarchuk, J. Power Sources 168 (2007) 211.Google Scholar
  120. 120.
    J. L. Jespersen, E. Schaltz, S. K. Kaer, J. Power Sources 191 (2009) 289.Google Scholar
  121. 121.
    J. T. Glass, G. L. Cahen and G. E. Stoner, J. Electrochem. Soc. 136 (1989) 656.Google Scholar
  122. 122.
    K.-L. Hsueh, E. R. Gonzalez, S. Srinivasan and D-T. Chin, J. Electrochem. Soc. 131 (1984) 823.Google Scholar
  123. 123.
    M. K. Daletou, F. Paloukis and A. Stefopoulos, ECS Transactions, 25 (2009) 1915.Google Scholar
  124. 124.
    J. O'M. Bockris, A. K. N. Reddy and M. Gamboa-Aldeco in Modern electrochemistry, Vol. 2A, 2nd edition, Kluer Academic/Plenum Publishers, New York, 2000, 1455.Google Scholar
  125. 125.
    S. Trasatti and O.A. Petrii, J. Electroanal. Chem. 327 (1992) 353.Google Scholar
  126. 126.
    K. Kinoshita, J. Elctrochem. Soc. 137 (1990) 845.Google Scholar
  127. 127.
    H. R. Kunz and G. A. Gruver, J. Electrochem. Soc.: Electrochem. Sci. Tech. 122 (1975) 1279.Google Scholar
  128. 128.
    N. M. Marcovic, T. G. Schmidt, V. Stamenkovic and P.N. Ross, Fuel Cells 1 (2001) 105.Google Scholar
  129. 129.
    N. M. Marcovic, H. A. Gatseiger and P. N. Ross, J. Phys. Chem. 99 (1995) 3411.Google Scholar
  130. 130.
    D. B. Sepa, M. V. Vojnovic and A. Damjanovic, Electrochim. Acta 26 (1981) 781.Google Scholar
  131. 131.
    J. C. Huang, R. K. Sen and E. Yeager, J. Electrochem. Soc. 126 (1979) 786.Google Scholar
  132. 132.
    A. Tanaka, R. Adzic and B. Nicolic, J. Serb. Chem. Soc. 64 (1999) 695.Google Scholar
  133. 133.
    J. Aragane, T. Murahashi and T. Odaka, J. Electrochem. Soc. 135 (1988) 844.Google Scholar
  134. 134.
    J. A. S. Bett, K. Kinoshita and P. Stonehart, J. Catal. 41 (1976) 124.Google Scholar
  135. 135.
    P. J. Ferreira, G. J. Ia O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha and H. A. Gasteiger, J. Electrochem. Soc. 152 (2005) A2256.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maria K. Daletou
    • 1
  • Joannis Kallitsis
    • 1
    • 2
    • 3
  • Stylianos G. Neophytides
    • 1
    • 3
  1. 1.Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT)Foundation for Research and Technology HellasPatrasGreece
  2. 2.Department of ChemistryUniversity of PatrasPatrasGreece
  3. 3.ADVENT TechnologiesPatras Science ParkPatrasGreece

Personalised recommendations