3 XAS Investigations of PEM Fuel Cells

  • Christina Roth
  • David E. Ramaker
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 51)


Polymer-electrolyte membrane (PEM) fuel cells are still far from an area-wide market launch due in part to long-term stability, reliability and cost issues. A more detailed knowledge of the underlying reaction mechanisms is expected to further their application, as it would allow for the design of tailor-made catalysts. However, this will only be possible by complementing traditional in situ studies on single-crystals in electrochemical cells with more sophisticated metal/electrolyte interfacial studies by novel spectroscopic methodologies, which can provide complementary insights into the behaviour of commercial catalysts under real fuel cell operating conditions. This review will focus on the advances of Xray absorption spectroscopy (XAS) in applied fuel cell research utilizing several examples. XAS enables both the nanoparticle morphology and the adsorbate coverage and binding site to be investigated with just one technique. The latter is possible when complementing the conventional extended X-ray absorption fine structure (EXAFS) analysis with the more novel Δμ XANES approach.


Fuel Cell Adsorbate Coverage PtRu Catalyst PtRu Alloy High Resolution Electron Energy Loss Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . D. Dresselhaus, G. Crabtree, M. Buchanan, Report on Basic Energy Science Workshop on Hydrogen Production, Storage and Use, Washington, D.C, 2003.Google Scholar
  2. 2.
    J. C. Davies, B. E. Hayden, D. J. Pegg, M. E. Rendall, Surf. Sci. 496 (2002) 110.CrossRefGoogle Scholar
  3. 3.
    V. Stamenkovic, B. N. Grgur, P. N. Ross, N. M. Markovic, J. Electrochem. Soc. 152 (2005) A277.CrossRefGoogle Scholar
  4. 4.
    G. Q. Lu, J. O. White, A. Wieckowski, Surf. Sci. 564 (2004) 131.CrossRefGoogle Scholar
  5. 5.
    C. Roth, N. Martz, H. Fuess, Phys. Chem. Chem. Phys., 2001, 3, 315.CrossRefGoogle Scholar
  6. 6.
    A. S. Arico, P. Creti, H. Kim, R. Mantegna, N. Giordano and V. Antonucci, J. Electrochem. Soc. 143 (1996) 3950.CrossRefGoogle Scholar
  7. 7.
    D. R. Rolison, P. L. Hagans, K. E. Swider, J. W. Long, Langmuir 15 (1999) 774.CrossRefGoogle Scholar
  8. 8.
    C. Roth, N. Martz, F. Hahn, J.-M. Leger, C. Lamy and H. Fuess, J. Electrochem. Soc. 149 (2002) E433.CrossRefGoogle Scholar
  9. 9.
    K. Lasch, L. Jörissen, J. Garche, J. Power Sources 84 (1999) 225.CrossRefGoogle Scholar
  10. 10.
    C. Roth, N. Martz, Th. Buhrmester, H. Fuess, Phys. Chem. Chem. Phys. 4 (2002) 3555.CrossRefGoogle Scholar
  11. 11.
    M. S. Nashner, A. I. Frenkel, D. L. Adler, J. R. Shapley, R. G. Nuzzo, J. Am. Chem. Soc. 119 (1997) 7760.CrossRefGoogle Scholar
  12. 12.
    M. S. Nashner, A. I. Frenkel, D. Somerville, C. W. Hills, J. R. Shapley, R. G. Nuzzo, J. Am. Chem. Soc. 120 (1998) 8093.CrossRefGoogle Scholar
  13. 13.
    M. Loster, D. Balzar, K. A. Friedrich, J. Garche, J. Phys. Chem. C 111 (2007) 9591.CrossRefGoogle Scholar
  14. 14.
    S. R. Brankovic, N. S. Marinkovic, J. X. Wang, R. R. Adžić, J. Electroanal. Chem. 532 (2002) 57.CrossRefGoogle Scholar
  15. 15.
    X. H. Xia, T. Iwasita, F. Ge, W. Vielstich, Electrochim. Acta 41 (1996) 711.CrossRefGoogle Scholar
  16. 16.
    J. McBreen, in Physical Electrochemistry: Principles, Methods and Applications, Ed. by I. Rubinstein, Marcel Dekker, Inc., New York, 1995, 339.Google Scholar
  17. 17.
    J. McBreen, S. Mukerjee in Interfacial Electrochemistry, Ed. by A. Wieckowski, Marcel Dekker, New York, 1998, 895.Google Scholar
  18. 18.
    R. A. Lampitt, L. P. L. Carrette, M. P. Hogarth, A. E. Russell, J. Electroanal. Chem., 460 (1999) 80.CrossRefGoogle Scholar
  19. 19.
    S. Mukerjee, R. C. Urian, Electrochim. Acta 47 (2002) 3219.CrossRefGoogle Scholar
  20. 20.
    W. E. O';Grady, D. E. Ramaker, X. Qian, J. Phys. Chem. B 101 (1997) 5624.CrossRefGoogle Scholar
  21. 21.
    W. E. O';Grady, P. L. Hagans, K. I. Pandya, D. L. Maricle, Langmuir 17 (2001) 3047.CrossRefGoogle Scholar
  22. 22.
    S. Maniguet, R. J. Mathew, A. E. Russell, J. Phys. Chem. B 104 (2000) 1998.CrossRefGoogle Scholar
  23. 23.
    B. M. Weckhuysen, in In-situ Spectroscopy of Catalysts, Ed. by B. M. Weckhuysen, American Scientific Publishers, 2004, 1-10.Google Scholar
  24. 24.
    R. Viswanathan, G. Hou, R. Liu, S. R. Bare, F. Modica, G. Mickelson, C. U. Segre, N. Leyarovska, E. S. Smotkin, J. Phys. Chem. B 106 (2002) 3458.CrossRefGoogle Scholar
  25. 25.
    A. E. Russell, A. Rose, Chem. Rev. 104 (2004) 4613.CrossRefGoogle Scholar
  26. 26.
    D. E. Ramaker, D. C. Koningsberger, Phys. Rev. Lett. 89 (2002) 139701.CrossRefGoogle Scholar
  27. 27.
    D. E. Ramaker, M. Teliska, Y. Zhang, A. Yu, D. C. Koningsberger, Phys. Chem. Chem. Phys. 5 (2003) 4492.CrossRefGoogle Scholar
  28. 28.
    M. Teliska, V. S. Murthi, S. Mukerjee, D. E. Ramaker, J. Electrochem. Soc. 152 (2005) A1259.CrossRefGoogle Scholar
  29. 29.
    M. Teliska, W. E. O';Grady, D. E. Ramaker, J. Phys. Chem. B 109 (2005) 8076.CrossRefGoogle Scholar
  30. 30.
    M. Teliska, D. E. Ramaker, V. Srinivasamurthi, and S. Mukerjee, in Fundamental Understanding of Electrode Processes in Memory of Professor Ernest B. Yeager, J. Prakash, D. Chu, D. Scherson, M. A. Enayetullah and T. Bae, Eds., PV 2003-30, p. 212, The Electrochemical Society, Pennington, NJ (2003).Google Scholar
  31. 31.
    F. J. Scott, S. Mukerjee, D. E. Ramaker, J. Electrochem. Soc. 154 (2007) A396.CrossRefGoogle Scholar
  32. 32.
    J. M. Ziegelbauer, D. Gatewood, A. F. Gullá, D. E. Ramaker, S. Mukerjee, Electrochem. Solid-State Lett. 9 (2006) A430.CrossRefGoogle Scholar
  33. 33.
    J. M. Ziegelbauer, D. Gatewood, D. E. Ramaker, S. Mukerjee, ECS Trans. 1 (2006) 119.Google Scholar
  34. 34.
    T. Arruda, B. Shyam, J. Ziegelbauer, S. Mukerjee, D. E. Ramaker, J. Phys. Chem. 112 (2008) 18087.Google Scholar
  35. 35.
    J. Antolini, Mater. Chem. Phys. 78 (2003) 563.CrossRefGoogle Scholar
  36. 36.
    V. Radmilovic, H. A. Gasteiger, P. N. Ross, J. Catal. 154 (1995) 98.CrossRefGoogle Scholar
  37. 37.
    P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, H. Topsoe, Science 295 (2002) 2053.CrossRefGoogle Scholar
  38. 38.
    H.-G. Haubold, P. Hiller, H. Jungbluth, T. Vad, Jpn. J. Appl. Phys. 38 (1999) 36; H. G. Haubold, K. H. Wang, H. Jungbluth, G. Goerigk, W. Schilling, J. Mol. Struct. 383 (1996) 283.CrossRefGoogle Scholar
  39. 39.
    B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Malouk, S. Sarangapani, J. Phys. Chem. B 102 (1998) 9997.CrossRefGoogle Scholar
  40. 40.
    A. E. Russell, S. Maniguet, R. J. Mathew, J. Yao, M. A. Roberts, D. Thompsett, J. Power Sources 96 (2001) 226.CrossRefGoogle Scholar
  41. 41.
    P. A. Christensen, A. Hamnett, S. A. Weeks, J. Electroanal. Chem. 250 (1998) 127.CrossRefGoogle Scholar
  42. 42.
    I. Villegas, M. J. Weaver, J. Chem. Phys. 101 (1994) 1648.CrossRefGoogle Scholar
  43. 43.
    N. M. Markovic, C. A. Lucas, A. Rodes, V. Stamenkovic, P. N. Ross, Surf. Sci. 499 (2002) L149.CrossRefGoogle Scholar
  44. 44.
    V. R. Stamenkovic, M. Arenz, C. A. Lucas, M. E. Gallagher, P. N. Ross, N. M. Markovic, J. Am. Chem. Soc. 125 (2003) 2736.CrossRefGoogle Scholar
  45. 45.
    K. Klasovsky, J. Hohmeyer, A. Brückner, M. Bonifer, J. Arras, M. Steffan, M. Lucas, J. Radnik, C. Roth, P. Claus, J. Phys. Chem. C 112 (2008) 19555; K. Krauss, A. Drochner, M. Fehlings, J. Kunert, H. Vogel, J. Mol. Cat. A 162 (2000) 405.CrossRefGoogle Scholar
  46. 46.
    W. Fan, C. Pu, K. L. Ley, and E. S. Smotkin, J. Electrochem. Soc., 143, L21 (1996); Q. Fan, C. Pu, and E. S. Smotkin, J. Electrochem. Soc., 143, 3053 (1996).CrossRefGoogle Scholar
  47. 47.
    D. C. Koningsberger, B. L. Mojet, G. E. van Dorssen, D. E. Ramaker, Top. Catal. 10 (2000) 143.CrossRefGoogle Scholar
  48. 48.
    G. E. van Dorssen, D. C. Koningsberger, D. E. Ramaker, J. Phys.: Condens. Matter 14 (2002) 13529.CrossRefGoogle Scholar
  49. 49.
    C. Roth, N. Benker, Th. Buhrmester, M. Mazurek, M. Loster, H. Fuess, D. C. Koningsberger, D. E. Ramaker, J. Am. Chem. Soc. 127 (2005) 14607.CrossRefGoogle Scholar
  50. 50.
    F. J. Scott, S. Mukerjee, D. E. Ramaker, J. Phys. Chem.C. 114 (2010) 442.CrossRefGoogle Scholar
  51. 51.
    C. Roth, N. Benker, M. Mazurek, F. Scheiba, H. Fuess, Appl. Catal. A: General 319 (2007) 81.CrossRefGoogle Scholar
  52. 52.
    A. Savitzky, M. J. E. Golay, Anal. Chem. 36 (1964) 1627.CrossRefGoogle Scholar
  53. 53.
    A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Rev. 58 (1998) 7565.CrossRefGoogle Scholar
  54. 54.
    Janin, E.; von Schenck, H.; Gothelid, M.; Karlsson, U. O.; Svensson, M. Phys. Rev. B: Condens. Matter Mater. Phys. 61 (2000) 13144.CrossRefGoogle Scholar
  55. 55.
    E. Smotkin, S. Stoupin, E. A. Lewis, H. Rivera, C. R. Grice, Q. Jia, M. Fuccillo, C. Segre, Abstract 995, 214th ECS, Honolulu, HA, Oct. 12-17, 2008Google Scholar
  56. 56.
    D. E. Ramaker, M. Teliska, Y. Zhang, A. Yu. Stakheev and D. C. Koningsberger, Phys. Chem. Chem. Phys. 5 (2003) 4492.CrossRefGoogle Scholar
  57. 57.
    F. J. Scott, C. Roth, D. E. Ramaker, J. Phys. Chem. C 111 (2007) 11403.CrossRefGoogle Scholar
  58. 58.
    J. Barber, S. Morin and B. E. Conway, J. Electroanal. Chem., 446 (1998) 125.CrossRefGoogle Scholar
  59. 59.
    N. M. Markovic, B. N. Grgur and P. N. Ross, J. Phys. Chem. B, 101 (1997) 5405.CrossRefGoogle Scholar
  60. 60.
    A. Bewick, J. W. Russell, J. Electroanal. Chem. Interfac. Electrochem. 132 (1982) 329.CrossRefGoogle Scholar
  61. 61.
    H. Ogasawara, M. Ito, Chem. Phys. Lett. 221 (1994) 213.CrossRefGoogle Scholar
  62. 62.
    A. Peremans, A. Tadjeddine, J. Chem. Phys. 103 (1995) 7197.CrossRefGoogle Scholar
  63. 63.
    D. E. Ramaker, F. J. Scott, C. Roth, manuscript in preparation (2010).Google Scholar
  64. 64.
    G. S. Chai, S. B. Yoon, J.-S. Yu, J.-H Choi, Y.-E. Sung, J. Phys. Chem. B 108 (2004) 7074.CrossRefGoogle Scholar
  65. 65.
    X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS,and XANES, in Chemical Analysis 92, D. C. Koningsberger and R. Prins, ed., John Wiley & Sons, New York, NY,1988. Google Scholar
  66. 66.
    E. A. Stern and S. M. Heald, Basic Principles and Applications of EXAFS, Chapter 10 in Handbook of Synchrotron Radiation, E. E. Koch, ed., North-Holland, Amsterdam, NL 1983, pp 995–1014.Google Scholar
  67. 67.
    D.C. Koningsberger, B.L. Mojet, G.E. van Dorssen, and D.E. Ramaker, Topics in Catal. 10, (2000) 143.CrossRefGoogle Scholar
  68. 68.
    Tutorials and other EXAFS training on the web: G. Bunker Tutorial from Daresbury Lab, UK: Advanced course by B. Ravel
  69. 69.
  70. 70.
    C. Roth, N. Martz, A. Morlang, R. Theissmann, H. Fuess, Phys. Chem. Chem. Phys. 6 (2004) 3557.CrossRefGoogle Scholar
  71. 71.
    S. Stoupin, E. H. Chung, S. Chattopadhyay, C.-U. Segre, E. S. Smotkin, J. Phys. Chem. B 110 (2006) 9972.CrossRefGoogle Scholar
  72. 72.
    S. Stoupin, H. Rivera, C. Li, C. U. Segre, C. Korceniewsky, D.-J. Casadonte, jr., H. Inoue, E. S. Smotkin, Phys. Chem. Chem. Phys. 10 (2008) 6430.CrossRefGoogle Scholar
  73. 73.
    B.-J. Hwang, L. S. Sarma, J.-M. Chen, C.-H. Chen, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, J. Amer. Chem. Soc. 127 (2005) 11140.CrossRefGoogle Scholar
  74. 74.
    B.-J. Hwang, C.-H. Chen, L. S. Sarma, J.-M. Chen, G.-R. Wang, M.-T. Tang, D.-G. Liu, J.-F. Lee, J. Phys. Chem. B 110 (2006) 6475.CrossRefGoogle Scholar
  75. 75.
    B. Ravel, M. Newville, J. Synchr. Rad. 12 (2005) 537.CrossRefGoogle Scholar
  76. 76.
    N. Chakroune, G. Viau, S. Ammar, L. Poul, D. Veautier, M. M. Chehimi, C. Mangeney, F. Villain, F. Fievet, Langmuir 21 (2005) 6788.CrossRefGoogle Scholar
  77. 77.
    C. Lu, C. Rice, R. I. Masel, P. K. Babu, P. Waszczuk, H. S. Kim, E. Oldfield and A. Wieckowski, J. Phys. Chem. B, 106 (2002) 9581.CrossRefGoogle Scholar
  78. 78.
    C. Lu and R. I. Masel, J. Phys. Chem. B 105 (2001) 9793.CrossRefGoogle Scholar
  79. 79.
    T. Yajima, H. Uchida and M. Watanabe, J. Phys. Chem. B 108 (2004) 2654.CrossRefGoogle Scholar
  80. 80.
    M. T. M. Koper, Surf. Sci. 548 (2004) 1.CrossRefGoogle Scholar
  81. 81.
    S. R. Brankovic, J. X. Wang, R. R. Adzic, Electrochem. Solid-State Lett. 4 (2001) A217.CrossRefGoogle Scholar
  82. 82.
    M. T. M. Koper, N. P. Lebedeva, C. G. M. Hermse, Faraday Discuss. 121 (2002) 301.CrossRefGoogle Scholar
  83. 83.
    N. P. Lebedeva, M. T. M. Koper, J. M. Feliu, R. A. van Santen, J. Electroanal. Chem. 524-525 (2002) 242.CrossRefGoogle Scholar
  84. 84.
    Y. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski and E. Oldfield, J. Am. Chem. Soc. 124 (2002) 468.CrossRefGoogle Scholar
  85. 85.
    K. Wang, H. A. Gasteiger, N. M. Markovic, P. N. Ross, jr., Electrochim. Acta 41 (1996) 2587.CrossRefGoogle Scholar
  86. 86.
    S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N. Grgur, N. M. Markovic, P. N. Ross, J. R. Giallombardo, E. S. De Castroc, Sol. State. Lett. 2 (1999) 12.CrossRefGoogle Scholar
  87. 87.
    M. T. M. Koper, J. J. Lukkien, A. P. J. Jansen, R. A. Van Santen, J. Phys. Chem. B 103 (1999) 5522.CrossRefGoogle Scholar
  88. 88.
    S. Desai, M. Neurock, Electrochim. Acta 48 (2003) 3759.CrossRefGoogle Scholar
  89. 89.
    C. Bock, M. A. Blakely, B. MacDougall, Electrochim. Acta 50 (2005) 2401. C. Bock, A. Collier, B. MacDougall, J. Electrochem. Soc. 152 (2005) A2291.CrossRefGoogle Scholar
  90. 90.
    J. M. Ziegelbauer, D. Gatewood, A. F. Gullá, D. E. Ramaker, S. Mukerjee, M. J.-F. Guinel, F. Ernst, J. Phys. Chem.C. 113 (2009) 6955.CrossRefGoogle Scholar
  91. 91.
    D. E. Ramaker, B. Shyam, T. Arruda, S. Mukerjee, A. Wieckowski, manuscript in preparation.Google Scholar
  92. 92.
    D. Gatewood, D.E. Ramaker, K. Sasaki, K. E. Swider-Lyons, J. Electrochem. Soc. 155 (2008) B834.CrossRefGoogle Scholar
  93. 93.
    A. Korovina, K. Swider Lyons, D.E. Ramaker, manuscript in preparation.Google Scholar
  94. 94.
    D. S. Gatewood, T. L. Schull, O. Baturina, J. J. Pietron, Y. Garsany, K. E. Swider-Lyons, D. E. Ramaker, J. Phys. Chem. B 112 (2008) 4961.CrossRefGoogle Scholar
  95. 95.
    M. Teliska, V. S. Murthi, S. Mukerjee, D. E. Ramaker, J. Phys. Chem. C 111 (2007) 9267.CrossRefGoogle Scholar
  96. 96.
    D. Gatewood, K. Swider Lyons, and D. E. Ramaker, J. Phys. Chem. C DOI: 10.1021/jp101977g.Google Scholar
  97. 97.
    J. Melke, A. Schoekel, D. Dixon, C. Cremers, D.E. Ramaker, and C. Roth, J. Phys. Chem. C, 114 (2010) 5914.CrossRefGoogle Scholar
  98. 98.
    Y. Ji, V. Koot, A. M. J. van der Eerden, B. M. Weckhuysen, D. C. Koningsberger, D. E. Ramaker, J. Catalysis 245 (2007) 415.CrossRefGoogle Scholar
  99. 99.
    E. Bus, D. E. Ramaker, J. A. van Bokhoven, J. Am. Chem. Soc. 129 (2007) 8094.CrossRefGoogle Scholar
  100. 100.
    T. A. Nijhuis, E. Sacaliucb, A. M. Beale, A. M. J. van der Eerden, J. C. Schouten, B. M. Weckhuysen, J. Catalysis 258 (2008) 256.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christina Roth
    • 1
  • David E. Ramaker
    • 2
  1. 1.Institute for Materials ScienceTechnische Universität Darmstadt (TUD)DarmstadtGermany
  2. 2.Department of ChemistryGeorge Washington University (GWU)Washington D.C.USA

Personalised recommendations