4 Preparation of Hierarchical (Nano/Meso/Macro) Porous Structures Using Electrochemical Deposition

  • Heon-Cheol Shin
  • Meilin Liu
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 47)


Rapid advancements in electronic and telecommunication devices as well as increased concern on global warming have greatly intensified the demands for a new generation of energy storage and conversion devices. One of the grand challenges is how to create devices with energy and power densities far greater than those available today. The key to the successful creation of such a device depends critically on the development of new electrode materials with novel structures that dramatically enhance the charge and mass transfer along surfaces and across interfaces.


Porous Structure Solid Oxide Fuel Cell Porous Electrode Electrochemical Device Hydrogen Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1D. R. Rolison and B. Dunn, J. Mater. Chem. 11 (2001) 963.CrossRefGoogle Scholar
  2. 2.
    2J. W. Long, R. M. Stroud, and D. R. Rolison, J. Non-Cryst. Solids 285 (2001) 288.CrossRefGoogle Scholar
  3. 3.
    3J. W. Long, L. R. Qadir, R. M. Stroud, and D. R. Rolison, J. Phys. Chem. B 105 (2001) 8712.CrossRefGoogle Scholar
  4. 4.
    4J. W. Long, C. P. Rhodes, A. L. Young, and D. R. Rolison, Nano Letters 3 (2003) 1155.CrossRefGoogle Scholar
  5. 5.
    5J. S. Sakamoto and B. Dunn, J. Mater. Chem. 12 (2002) 2859.CrossRefGoogle Scholar
  6. 6.
    6K. Kinoshita, X. Song, K. Kim, and M. Inaba, J. Power Sources 81/82 (1999) 170.CrossRefGoogle Scholar
  7. 7.
    7S. Ranganathan, R. Mccreery, S. M. Majji, and M. Madou, J. Electrochem. Soc. 147 (2000) 277.CrossRefGoogle Scholar
  8. 8.
    8Q. C. Horn, K. C. White, Y. S. Horn, and J. D. Lennhoff, 204th ECS Meeting, Orlando, Florida, October 12-16, 2003.Google Scholar
  9. 9.
    9H.-C. Shin, J. Dong, and M. Liu, Adv. Mater. 15 (2003) 1610.CrossRefGoogle Scholar
  10. 10.
    10H.-C. Shin and M. Liu, Chem. Mater. 16 (2004) 5460.CrossRefGoogle Scholar
  11. 11.
    11H.-C. Shin and M. Liu, Adv. Funct. Mater. 15 (2005) 582.CrossRefGoogle Scholar
  12. 12.
    12N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, J. Electroanal. Chem. 588 (2006) 88.Google Scholar
  13. 13.
    13N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, Surf. Coatings Tech. 201 (2006) 560.Google Scholar
  14. 14.
    14Y. Li, W.-Z. Jia, Y.-Y. Song, and X.-H. Xia, Chem. Mater. 19 (2007) 5758.CrossRefGoogle Scholar
  15. 15.
    15T. Jiang, S. Zhang, X. Qiu, W. Zhu, and L. Chen, Electrochem. Commun. 9 (2007) 930.CrossRefGoogle Scholar
  16. 16.
    16Y. Li, Y.-Y. Song, C. Yang, and X.-H. Xia, Electrochem. Commun. 9 (2007) 981.CrossRefGoogle Scholar
  17. 17.
    17N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, Electrochim. Acta 52 (2007) 8096.Google Scholar
  18. 18.
    18T. Jiang, S. Zhang, X. Qiu, W. Zhu, and L. Chen, J. Power Sources 166 (2007) 503.CrossRefGoogle Scholar
  19. 19.
    19N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, J. Solid State Electrochem. 11 (2007) 667.Google Scholar
  20. 20.
    20N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, Sensors 7 (2007) 1.Google Scholar
  21. 21.
    21K. M. Abraham, D. M. Pasquariello, and E. M. Willstaedt, J. Electrochem. Soc. 145 (1998) 482.CrossRefGoogle Scholar
  22. 22.
    22B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York, 1999, p.377.Google Scholar
  23. 23.
    23B. B. Mandelbrot, The Fractal Geometry of Nature, W.H.Freeman and Company, New York, 1983.Google Scholar
  24. 24.
    24J. Feder, Fractals, Plenum Press, New York, 1988.Google Scholar
  25. 25.
    25J. C. Russ, Fractal Surfaces, Plenum Press, New York, 1994.Google Scholar
  26. 26.
    26R. M. Brady and R. C. Ball, Nature 309 (1984) 225.CrossRefGoogle Scholar
  27. 27.
    27I. Petersson and E. Ahlberg, J. Electroanal. Chem. 485 (2000) 166.CrossRefGoogle Scholar
  28. 28.
    28B. Kim and T. Ritzdorf, J. Electrochem. Soc. 150 (2003) C53.CrossRefGoogle Scholar
  29. 29.
    29T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47 (1981) 1400.CrossRefGoogle Scholar
  30. 30.
    30George T. T. Sheng, C. F. Hu, W. J. Choi, K. N. Tu, Y. Y. Bong, and L. Nguyen, J. Appl. Phys. 92 (2002) 64.Google Scholar
  31. 31.
    31D.-K.Kang, J.-H.Heo, and H.-C.Shin, Kor. J. Mater. Res. 18 (2008) 163.CrossRefGoogle Scholar
  32. 32.
    32D. A.Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, New Jersey, 1996.Google Scholar
  33. 33.
    33V. Fleury, Nature 390 (1997) 145.CrossRefGoogle Scholar
  34. 34.
    34K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, Electrochem. Solid-State Lett. 2 (1999) 307.CrossRefGoogle Scholar
  35. 35.
    35G. X. Wang, L. Sun, D. H. Bradhurst, S. X. Dou, and H. K. Liu. J. Alloys & Compounds 299 (2000) L12.CrossRefGoogle Scholar
  36. 36.
    36Y. Xia, T. Sakai, T. Fujieda, M. Wada, and H. Yoshinaga, J. Electrochem. Soc. 148 (2001) 471.CrossRefGoogle Scholar
  37. 37.
    37S. D. Beattie and J. R. Dahn, J. Electrochem. Soc. 150 (2003) A894.CrossRefGoogle Scholar
  38. 38.
    38V. S. J. Craig, B. W. Ninham, and R. M. Pashley, J. Phys. Chem. 97 (1993) 10197.CrossRefGoogle Scholar
  39. 39.
    39V. S. J. Craig, B. W. Ninham, and R. M. Pashley, Nature 364 (1993) 317.CrossRefGoogle Scholar
  40. 40.
    40L. A. Deschenes, J. Barrett, L. J. Muller, U. Mohanty, and J. T. Fourkas, J. Phys. Google Scholar
  41. 41.
    Chem. B 101 (1997) 5777.Google Scholar
  42. 42.
    41L. A. Deschenes, J. Barrett, L. J. Muller, J. T. Fourkas, and U. Mohanty, J. Phys. Chem. B 102 (1998) 5115.CrossRefGoogle Scholar
  43. 43.
    42U. Hofmeier, V. V. Yaminsky, and H. K. Christenson, J. Colloid Interface Sci. 174 (1995) 199.CrossRefGoogle Scholar
  44. 44.
    43M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition Google Scholar
  45. 45.
    2nd ed., Wiley-Interscience, The Electrochemical Society (2006).Google Scholar
  46. 46.
    44J. H. White and H. D. Abruna, J. Electroanal. Chem. 300 (1991) 521.CrossRefGoogle Scholar
  47. 47.
    45E. Herrero and H. D. Abruna, Langmuir 13 (1997) 4446.CrossRefGoogle Scholar
  48. 48.
    46 T. Fukuda and A. Aramata, J. Electroanal. Chem. 467 (1999) 112.CrossRefGoogle Scholar
  49. 49.
    47J. J. Kelly and A. C. West, Electrochem. Solid-State Lett. 2 (1999) 561.CrossRefGoogle Scholar
  50. 50.
    48J. J. Kelly, C. Y. Tian, and A. C. West, J. Electrochem. Soc. 146 (1999) 2540.CrossRefGoogle Scholar
  51. 51.
    49T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, J. Electrochem. Soc. 147 (2000) 4524.CrossRefGoogle Scholar
  52. 52.
    50T. P. Moffat, D. Wheeler, W. H. Huber, and D. Jossel, Electrochem. Solid-State Lett. 4 (2001) C26.CrossRefGoogle Scholar
  53. 53.
    51T. P. Moffat, D. Wheeler, C. Witt, and D. Jossel, Electrochem. Solid-State Lett. 5 (2002) C110.CrossRefGoogle Scholar
  54. 54.
    52T. Kobatashi, J. Kawasaki, K. Mihara, and H. Honma, Electrochim. Acta 47 (2001) 85.CrossRefGoogle Scholar
  55. 55.
    53P. Taephaisitphongse, Y. Cao, and A. C. West, J. Electrochem. Soc. 148 (2001) C492.CrossRefGoogle Scholar
  56. 56.
    54W.-P. Dow, H.-S. Huang, and Z. Lin, Electrochem. Solid-State Lett. 6 (2003) C134.CrossRefGoogle Scholar
  57. 57.
    55Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, J. Electrochem. Soc. 142 (1995) L87.CrossRefGoogle Scholar
  58. 58.
    56S. Rashkov and D. S. Stoichev, Surf. Technol. 6 (1978) 155.CrossRefGoogle Scholar
  59. 59.
    57L. Bonou, M. Eyraud, R. Denoyel, and Y. Massiani, Electrochim. Acta 47 (2002) 4139.CrossRefGoogle Scholar
  60. 60.
    58D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, J. Electroanl.Chem. 532 (2002) 353.CrossRefGoogle Scholar
  61. 61.
    59I. A. Courtney and J. R. Dahn, J. Electrochem. Soc. 144 (1997) 2045.CrossRefGoogle Scholar
  62. 62.
    60M. Winter and J. O. Besenhard, Electrochim. Acta 45 (1999) 31.CrossRefGoogle Scholar
  63. 63.
    61R. A. Huggins, J. Power Sources 81/82 (1999) 13.CrossRefGoogle Scholar
  64. 64.
    62G. M. Ehrlich, C. Durand, X. Chen, T. A. Hugener, F. Spiess, and S. L. Suib, J. Electrochem. Soc. 147 (2000) 886.CrossRefGoogle Scholar
  65. 65.
    63H. Mukaido, T. Sumi, T. Yokoshima, T. Momma, and T. Osaka, Electrochem. & Solid-State Lett. 6 (2003) A218.CrossRefGoogle Scholar
  66. 66.
    64Y.-L. Kim, H.-Y. Lee, S.-W. Jang, S.-J. Lee, H.-K. Baik, Y.-S. Yoon, Y.-S. Park, and S.-M. Lee, Solid State Ionics 160 (2003) 235.CrossRefGoogle Scholar
  67. 67.
    65O. Mao, R. L. Turner, I. A. Courtney, B. D. Fredericksen, M. I. Buckett, L. J. Krause, and J. R. Dahn, Electrochem. & Solid-State Lett. 2 (1999) 3.CrossRefGoogle Scholar
  68. 68.
    66O. Mao and J. R. Dahn, J. Electrochem. Soc. 146 (1999) 414.CrossRefGoogle Scholar
  69. 69.
    67M. Winter and J. O. Besenhard, Electrochim. Acta 45 (1999) 31.CrossRefGoogle Scholar
  70. 70.
    68J. Yang, M. Winter, and J. O. Besenhard, Solid State Ionics 90 (1996) 281.CrossRefGoogle Scholar
  71. 71.
    69A. C. Tavares, B. L. Kuzin, S. M. Beresnev, N. M. Bogdanovich, E. Kh. Kurumchin, Y. A. Dubitsky, and A. Zaopo, J. Power Sources 183 (2008) 20.CrossRefGoogle Scholar
  72. 72.
    70H. P. He, A. Wood, D. Steedman, and M. Tilleman, Solid State Ionics 179 (2008) 1478.CrossRefGoogle Scholar
  73. 73.
    71J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, and Y. Li, Electrochem. Commun. 4 (2002) 499.CrossRefGoogle Scholar
  74. 74.
    72J.-S. Chung and H.-J. Sohn, J. Power Sources 108 (2002) 226.CrossRefGoogle Scholar
  75. 75.
    73J. L. Wang, J. Yang, C. R. Wan, K. Du, J. Y. Xie, and N. X. Xu, Adv. Funct. Mater. 13 (2003) 487.CrossRefGoogle Scholar

Copyright information

© Springer Science+Buisness Media, LLC 2012

Authors and Affiliations

  • Heon-Cheol Shin
    • 1
  • Meilin Liu
    • 2
  1. 1.School of Materials Science and EngineeringPusan National UniversityBusanRepublic of KOREA
  2. 2.Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations