Advertisement

1 Advances in the Study of Electrochemical and Corrosion Phenomena in High Subcritical and in Supercritical Aqueous Solutions

  • Digby D. Macdonald
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 47)

Abstract

Supercritical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of low-level nuclear waste. For example, SCWO has been chosen by the US Army to destroy chemical agents, such as VX hydrolysate (product obtained by hydrolyzing the chemical agent VX with caustic) and a facility for meeting this goal is now operating in Newport, Indiana. However, other chemical agents as listed in Table 1 are scheduled to be treated in a similar manner. Note that the various agents contain sulfur, phosphorous, fluorine, and nitrogen (in the form of cyanide), so that complete oxidation is expected to produce the oxyacids and/or (depending upon the pH) oxyanions of these elements. The US Navy has also explored SCWO for destroying shipboard waste, including oils and greases, solvents, and paints. Various pilot plant commercial facilities have been built in the United States, Europe, and Japan with the goal of demonstrating the efficacy of the method for destroying resilient organic waste. A variant of SCWO that operates under less severe conditions has been developed by SRI International in the form of Assisted Hydrothermal Oxidation (AHO). This technology is now offered on a commercial basis by Mitsubishi Heavy Industries, who operate a commercial pilot plant in Nagasaki, Japan. Given the increasing sensitivity of regulatory agencies and the general public to toxic waste, there is little doubt that the commercial and governmental application of SCWO will expand rapidly in the foreseeable future.

Keywords

Crack Growth Rate Yttria Stabilize Zirconia Supercritical Water Current Noise Standard Hydrogen Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1 B. Mitton, Supercritical Water – Materials Challenges, 17th ICC Meeting, Las Vegas, NV, Oct. 7-11, 2008.Google Scholar
  2. 2.
    2 G. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E. A. West, T. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, J. Nucl. Mat., 371 (2007) 1.CrossRefGoogle Scholar
  3. 3.
    3 D. D. Macdonald and L. B. Kriksunov, Electrochim. Acta, 47, (2001) 775.CrossRefGoogle Scholar
  4. 4.
    4 D. D. Macdonald, et al., “Supercritical Water Oxidation Studies: Understanding the Chemistry and Electrochemistry of SCWO Systems”, Pennsylvania State University Final Report to the US Army Research Office, Grant Nos. DAAL 03-92-G-0397 and DAAH 04-93-G-0150, Feb. 1997.Google Scholar
  5. 5.
    5 L. B. Kriksunov and D. D. Macdonald, Corrosion, 53 (1997) 605.CrossRefGoogle Scholar
  6. 6.
    6 D. D. Macdonald, B. G. Pound, and R. P. Singh “Extension of Potential-pH Diagrams to Concentrated Aqueous Solutions”. Proc. Symp. on Equilib. Diagrams and Localized Corrosion. Proc. Honoring Prof. Marcel Pourbaix on his Eightieth Birthday, 84-2: 69, edited by R. P. Frankenthal and J. Kruger. The Electrochemical Society, Inc., Pennington, N.J. Pennington, NJ, 1984.Google Scholar
  7. 7.
    7 G. W. Morey, Econ. Geol., 52 (1957) 225.CrossRefGoogle Scholar
  8. 8.
    8 M. Hodes, P. A. Marrone, G. T. Hong, K. A. Smith, J. W. Tester, J. Supercritical Fluids, 29 (2004) 265.CrossRefGoogle Scholar
  9. 9.
    9 L. B. Kriksunov and D. D. Macdonald, “Measurement and Standardization of pH in Supercritical Aqueous Systems”, Proc. Symp. High Temp. Press. Soln. Chem., Int. Conf. Pacific Basin Chem. Socs., PACIFICHEM ‘95, Amer. Chem. Soc., Washington, DC, 1995.Google Scholar
  10. 10.
    10 D. D. Macdonald and L. B. Kriksunov, “Critical Issues in the Supercritical Water Oxidation of Army Toxic Waste,” Proc. Symp. Emerging Technols. Hazardous Waste Manag. VII, D. W. Tedder (Ed.), ACS Meeting, Atlanta, GA, 1995, (Amer. Chem. Soc., Washington, DC), pp. 1280–1283.Google Scholar
  11. 11.
    11 S. N. Lvov, H. Gao, D. Kuznetsov, I Balachov and D. D. Macdonald, Fluid Phase Equilibria, 150-1 (1998) 515.Google Scholar
  12. 12.
    12 S. N. Lvov, X. Y. Zhou, S. M. Ulyanov, and A. V. Bandura, Chem. Geol., 167 (2000) 105.CrossRefGoogle Scholar
  13. 13.
    13 R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1959.Google Scholar
  14. 14.
    14 J. D. Frantz and W. L. Marshall, Amer. J. Sci., 284 (1984) 651.CrossRefGoogle Scholar
  15. 15.
    15 J. W. Johnson, E. H.Oelkers, and H. C. Helgeson, Computers ) Geosciences, 18 (1992) 899.CrossRefGoogle Scholar
  16. 16.
    16 NIST Properties of Water Software, National Institute of Science and Technology, Gaithersburg, MD, 1997.Google Scholar
  17. 17.
    17 ASME Steam Tables, Thermodynamic and Transport Properties of Steam, 6th Edition, ASME, NY, 1993.Google Scholar
  18. 18.
    18 D. D. Macdonald, L. B. Kriksunov. Corrosion, 34 (1978) 75.Google Scholar
  19. 19.
    19 R. E. Mesmer, C. F. Baes, Jr. Inorganic Chemistry 10 (1971) 2290.Google Scholar
  20. 20.
    20 R.E. Mesmer, C.F. Baes, Jr. and F.H. Sweeton. Inorganic Chemistry, 11 (1972) 537.CrossRefGoogle Scholar
  21. 21.
    21 R. E. Mesmer, C. F. Baes, Jr. J. Soln. Chem., 3 (1974) 307.CrossRefGoogle Scholar
  22. 22.
    22 F. H. Sweeton, R. E. Mesmer, C. F. Baes, Jr. J. Phys. E: Sci. Instrum., 6 (1973) 165.CrossRefGoogle Scholar
  23. 23.
    23 B. F. Hitch, R. E. Mesmer. J. Soln. Chem., 5 (1976) 667.CrossRefGoogle Scholar
  24. 24.
    24 R. E. Mesmer, H. F. Holmes. J. Soln. Chem., 21 (1992) 725.CrossRefGoogle Scholar
  25. 25.
    25 D. A. Palmer, D. J. Wesolowski. Geochimica et Cosmochimica Acta, 56 (1992) 1093.CrossRefGoogle Scholar
  26. 26.
    26 D. A. Palmer, D. J. Wesolowski. Geochimica et Cosmochimica Acta, 57 (1993) 2929.CrossRefGoogle Scholar
  27. 27.
    27 D. J. Wesolowshi, D. A. Palmer, R. E. Mesmer, Water-Rock Interaction, 51 (1995)Google Scholar
  28. 28.
    28 P. Benezeth, D. A. Palmer, D. J. Wesolowski. Geothermics, 26 (1997) 465.CrossRefGoogle Scholar
  29. 29.
    29 P. C. Ho, D. A. Palmer, R. H. Wood. J. Phys. Chem., B 104 (2000) 12084.Google Scholar
  30. 30.
    30 P. Benezeth, D. A. Palmer, D. J. Wesolowski. J. Chem. Eng. Data, 46 (2001) 202.CrossRefGoogle Scholar
  31. 31.
    31 P. Benezeth, D. J. Wesolowski D. A. Palmer. J. Chem. Eng. Data, 48 (2003) 171.Google Scholar
  32. 32.
    32 D. D. Macdonald, P. Butler and D. Owen. Can. J. Chem., 51 (1973) 2590.CrossRefGoogle Scholar
  33. 33.
    33 D. D. Macdonald, P. Butler,and D. Owen. J. Phys. Chem., 77 (1973) 2474.CrossRefGoogle Scholar
  34. 34.
    34 D. D. Macdonald, D. Owen. Can. J. Chem.,51 (1973) 2747.Google Scholar
  35. 35.
    35 D. W. Shoesmith, L. Woon. Can. J. Chem., 54 (1976) 3553.CrossRefGoogle Scholar
  36. 36.
    36 G. Giasson, P. H. Tewari. Can. J. Chem., 56 (1978) 435.CrossRefGoogle Scholar
  37. 37.
    37 Y. Matsushima, A. Matsunaga, K. Sakai, A. Okuwaki. Bull. Chem. Soc. Japan., 61 (1988) 4259.CrossRefGoogle Scholar
  38. 38.
    38 B. A. Bilal, E. Mueller. Z. Naturforsch., 48A (1993) 1073.Google Scholar
  39. 39.
    39 L. W. Niedrach. J. Electrochem. Soc., 127 (1980) 2122.CrossRefGoogle Scholar
  40. 40.
    40 T. Tsuruta, D. D. Macdonald. J. Electrochem. Soc., 129 (1982) 1202.CrossRefGoogle Scholar
  41. 41.
    41 M. J. Danielson, O. H. Koski, J. Meyers. J. Electrochem. Soc., 132 (1985) 296.CrossRefGoogle Scholar
  42. 42.
    42 M. J. Danielson, O. H. Koski, J. Meyers. J. Electrochem. Soc., 132 (1985) 2037.CrossRefGoogle Scholar
  43. 43.
    43 W. L. Bourcier, G. C. Ulmer, H. L. Barnes. Hydrothermal Experimental Techniques, Wiley-Interscience, New York, 1987, p. 157.Google Scholar
  44. 44.
    44 L. W. Niedrach. Science, 207 (1980) 1200.CrossRefGoogle Scholar
  45. 45.
    45 L. W. Niedrach. Patent Number, 4264424 (General Electric, 1981).Google Scholar
  46. 46.
    46 L. W. Niedrach. J. Electrochem. Soc., 212 (1982) 672.Google Scholar
  47. 47.
    47 L. W. Niedrach. Adv. Ceram. Sciences, 12 (1984) 672.Google Scholar
  48. 48.
    48 D. D. Macdonald, S. Hettiarachchi, S. J. Lenhart. J. Solut. Chem., 17 (1988) 719.CrossRefGoogle Scholar
  49. 49.
    49 S. Hettiarachchi, D. D. Macdonald. J. Electrochem. Soc., 131 (1984) 2206.CrossRefGoogle Scholar
  50. 50.
    50 D. D. Macdonald, S. Hettiarachchi, H. Song, K. Makela, R. Emerson, M. Haim. J. Solut. Chem., 21 (1992) 849.CrossRefGoogle Scholar
  51. 51.
    51 S. Hettiarachchi, K. Makela, H. Song, D. D. Macdonald. J. Electrochem. Soc., 139 (1992) L3-L4.CrossRefGoogle Scholar
  52. 52.
    52 L. B. Kriksunov, D. D. Macdonald. ASME Heat Transfer Div Publ HTD, Vol. 317-2, ASME Heat Transfer Division, 1995, p. 271.Google Scholar
  53. 53.
    53 S. N. Lvov, G. Perboni, M. Broglia. Physical Chemistry of Aqueous Systems, Begell House, New York, 1995, p. 441.Google Scholar
  54. 54.
    54 D. D. Macdonald, L. B. Kriksunov. in Proc. Symp. Emerging Technols. Hazardous Waste Manaf. VII, Ed. by. D.W. Tedder, Atlanta, GA, 1995, p. 1280.Google Scholar
  55. 55.
    55 L. B. Kriksunov, D. D. Macdonald. in Proc. Symp. High Temp. Press. Soln. Chem., Int. Conf. Pacific Basin Chem. Socs., PACIFICHEM '95, Washington D. C., 1995.Google Scholar
  56. 56.
    56 S. N. Lvov, G. Perboni, M. Broglia, Physical Chemistry of Aqueous Systems 441 (Begell House, New York, 1995).Google Scholar
  57. 57.
    57 D. D. Macdonald, L. B. Kriksunov, in Proc. Symp. Emerging Technols. Hazardous Waste Manuf. VII, Ed. by D. W. Tedder, Atlanta, GA, 1995, p. 1280.Google Scholar
  58. 58.
    58 L. B. Kriksunov and D. D. Macdonald, in Proc. Symp. High Temp. Press. Soln. Chem., Int. Conf. Pacific Basin Chem. Socs., PACIFICHEM’95, Washington, D.C., 1995.Google Scholar
  59. 59.
    59 K. Ding, W.E. Seyfried, Jr., Geochimica et Cosmochimica Acta, 59 (1995) 4769.CrossRefGoogle Scholar
  60. 60.
    60 K. Eklund, S. N. Lvov, D.D. Macdonald. J. Electroa. Chem., 437 (1997) 99.CrossRefGoogle Scholar
  61. 61.
    61 R. Fernandez-Prini, R. Crovetto. J. Phys. Chem. Ref. Data, 18 (1989) 1231.CrossRefGoogle Scholar
  62. 62.
    62 N. Kishima, H. Sakai. Earth Planetary Sci. Lett., 67 (1984) 79.CrossRefGoogle Scholar
  63. 63.
    63 K. Ding, W. E. Seyfried, Jr. J. Soln. Chem., 25 (1996) 421.CrossRefGoogle Scholar
  64. 64.
    64 S. N. Lvov, H. Gao, D. D. Macdonald. in Proc. Fifth Int. Symp. Hydrothermal Reacts., Ed. by D. A. Palmer and D. Wesolowski, ORNL, U.S. Dept. of Energy, Gatlinburg, TN, 1997, p. 146.Google Scholar
  65. 65.
    65 S. N. Lvov, H. Gao, D. D. Macdonald. J. Electroa. Chem., 443 (1998) 186.CrossRefGoogle Scholar
  66. 66.
    66 S. N. Lvov, X. Y. Zhou, D. D. Macdonald. J. Electroanal. Chem., 463 (1999) 146.CrossRefGoogle Scholar
  67. 67.
    67 K. Sue, M. Uchida, T. Usami, T. Adschiri, K. Arai. J. Supercritical Fluids, 28 (2004) 287; K. Sue, M. Uchida, T. Adschiri, K. Arai. J. Supercritical Fluids, 31 (2004) 295.Google Scholar
  68. 68.
    68 M. H. Lietzke. J. Amer. Chem. Soc., 77 (1955) 1344.CrossRefGoogle Scholar
  69. 69.
    69 R. S. Greeley, W. T. Smith, R. W. Stoughton, M. H. Lietzke. J. Phys. Chem., 64 (1960) 652.Google Scholar
  70. 70.
    70 R. S. Greeley, W. T. Smith, M. H. Lietzke, and R. W. Sroughton. J. Phys. Chem., 61 (1960) 1445.CrossRefGoogle Scholar
  71. 71.
    71 M. H. Lietzke, H. B. Hupf, R. W. Stoughton. J. Phys. Chem., 69 (1965) 2395.CrossRefGoogle Scholar
  72. 72.
    72 D. D. Macdonald. in Modern Aspects of Electrochemistry, Ed. by J. O'M. Bockris and B. E. Conway, Plenum, NY, 1975, p. 141.Google Scholar
  73. 73.
  74. 74.
    74 B. Case, G. J. Bignold. J. Appl. Electrochem., 1 (1971) 141.CrossRefGoogle Scholar
  75. 75.
    75 K. Ding., W. E. Seyfried, Jr., Science, 272 (1996) 1634.Google Scholar
  76. 76.
    76 K. Ding, W. E. Seyfried, Jr., Geochim. Cosmochim. Acta, 56 (1992) 3681.CrossRefGoogle Scholar
  77. 77.
    77 G. B. Naumov, B. N. Ryzhenko, I. L. Khodakovsky. Handbook of Thermodynamic Data, Ed. by I. Barnes and V. Speltz, U.S. Geological Survey, Menlo Park, CA, 1974.Google Scholar
  78. 78.
    78 J. C. Tanger IV, H. C. Helgeson. Am. J. Sci., 288 (1988) 19.Google Scholar
  79. 79.
    79 D. A. Sverjensky, J. J. Hemley, W. M. D'Angelo. Geochim. Cosmochim. Acta, 55 (1991) 988.Google Scholar
  80. 80.
    80 E.L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky, H. C. Helgeson. J Chem. Soc. Faraday Tran., 88 (1992) 803.CrossRefGoogle Scholar
  81. 81.
    81 J. V. Dobson, M. N. Dagless, H. R. Thirsk. J. Chem. Soc., Faraday Trans. i., 68 (1972) 739.Google Scholar
  82. 82.
    82 J. V. Dobson, M. N. Dagless, and H. R. Thirsk. J. Chem. Soc., Faraday Trans.i 68 (1972) 764.Google Scholar
  83. 83.
    83 J. V. Dobson, B. R. Chapman, and H. R. Thirsk, in International Conference on High Temperature High Pressure Electrochemistry in Aqueous Solutions(NACE), University of Survey, 1973.Google Scholar
  84. 84.
    84 D. D. Macdonald, P. R. Wentrcek, A. C. Scott. J. Electrochem. Soc., 127 (1980) 1745.CrossRefGoogle Scholar
  85. 85.
    85 Z. Nagy, R. M. Yonco. J. Electrochem. Soc., 133 (1986) 2232.CrossRefGoogle Scholar
  86. 86.
    86 S. Hettiarachchi, D. D. Macdonald. J. Electrochem. Soc., 134 (1987) 1307.CrossRefGoogle Scholar
  87. 87.
    87 P Jayaweera, T. O. Passell, and P. J. Millett, USA Patent 5425871.Google Scholar
  88. 88.
    88 D. de Jones, H. C. Mastrson. Adv. Corr. Sci. Tech., 1 (1970) 1.Google Scholar
  89. 89.
    89 D. D. Macdonald, D. Owen. J. Electrochem. Soc., 120 (1973) 317.CrossRefGoogle Scholar
  90. 90.
    90 D. D. Macdonald, A. C. Scott, P. Wentrcek. J. Electrochem. Soc. Electrochemical Science and Technology, 126 (1979) 908.Google Scholar
  91. 91.
    91 D. D. Macdonald, S. Hettiarachchi, S. J. Lenhart, in Proc. 1987 Symposium on Chemistry in High Temperature Water, EPRI Report NP-6005, Brigham Young University, Provo, Utah, 1990.Google Scholar
  92. 92.
    92 S. Hettiarachchi, S. J. Lenhart, D. D. Macdonald, in Proc. 3rd Int'l. Symp. Envir. Degrad. Mat. Nucl. Power Systs. -Water Reactors Ed. by G. J. Theus and J. R. Weeks, Met. Soc. AIME, Warrendale, PA, 1988, p. 165.Google Scholar
  93. 93.
    93 D. D. Macdonald, S. Hettiarachchi, R. Emerson, K. Makela, H. Song, M. B. Haim. in Proc. Symp. on Chemistry in HIgh-Temperature Aqueous Solutions, Brigham Young University, Provo, UT, 1991, C3a-1.Google Scholar
  94. 94.
    94 M. J. Danielson, Corrosion 39 (1983) 202.CrossRefGoogle Scholar
  95. 95.
    95 S. N. Lvov, X.Y. Zhou, Mineralogical Magazine, 62A (1998) 929.CrossRefGoogle Scholar
  96. 96.
    96 A. J. Bard, L.R. Faulkner in Electrochemical Methods Fundamentals and Applications, 2nd Edition, John Wiley ) Sons, Inc., 2000, p. 63.Google Scholar
  97. 97.
    97 T. Tsuruta, D. D. Macdonald. J. Electrochem. Soc., 129 (1982) 1221.CrossRefGoogle Scholar
  98. 98.
    98 H. W. Harper. J. Phys. Chem., 89 (1985) 1659.CrossRefGoogle Scholar
  99. 99.
    99 R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, Reading, MA, 1969.Google Scholar
  100. 100.
    100 S. N. Lvov, D. D. Macdonald, J. Electroanal. Chem., 403 (1996) 25.CrossRefGoogle Scholar
  101. 101.
    101 G. R. Engelhardt, S. N. Lvov, D. D. Macdonald, J. Electroanal. Chem., 429 (1997) 193.CrossRefGoogle Scholar
  102. 102.
    102 D. D. Macdonald, A. C. Scott, and P. R. Wentrcek, J. Electrochem. Soc., 126 (1979) 1618.CrossRefGoogle Scholar
  103. 103.
    103 L. S. Hwang, A. Boateng, and D. D. Macdonald, in Proc. Symp. Corr. Batteries and Fuel Cells and Corr. Solar Energy Systs, Ed. by C. J. Johnson and S. L. Pohlman, The Electrochemical Society, Inc., Pennington,NJ, 1983, p. 492.Google Scholar
  104. 104.
    104 N. Akinfiev, S.N. Lvov, D.D. Macdonald. Comput. Geosci. (in press).Google Scholar
  105. 105.
    105 A. S. Quist, W. L. Marshall, J. Phy. Chem.,69 (1965) 2984.Google Scholar
  106. 106.
    106 Y. D. Rakhmilevich, I. A. Dibrov, S. N. Lvov. Russ. J. Phys. Chem., 61 (1987) 2391.Google Scholar
  107. 107.
    107 S. N. Lvov, A. Marcomini, M. M. Suprun, in Proc. 4th Int. Sym. On HydrothermalGoogle Scholar
  108. 108.
    Reactions, Ed. by M. Cuney and M. Cathelineau, Nancy, 1993, p. 135.Google Scholar
  109. 109.
    108 S. N. Lvov, X. Y. Zhou, G. C. Ulmer, H. L. Barnes, D. D. Macdonald, S. M. Ulyanov, L. G. Benning, D. E. Grandstaff, M. Manna, and E. Vicenzi. Chemical Geology, 198 (2003) 141.CrossRefGoogle Scholar
  110. 110.
    109 K. Sue, K. Murata, Y. Matsuura, M. Tsukagoshi, T. Adschiri, K. Arai. Rev. Sci. Instrum., 72 (2001) 4442.CrossRefGoogle Scholar
  111. 111.
    110 K. Sue, K. Murata, Y. Matsuura, M. Tsukagoshi, T. Adschiri, K. Arai. Fluid Phase Equilib., 194-197 (2002) 1097.CrossRefGoogle Scholar
  112. 112.
    111 D. D. Macdonald, S. Hettiarachchi, H. Song, K. Makela, R. Emerson and M. Ben-Haim, J. Soln. Chem., 21(1992) 849.CrossRefGoogle Scholar
  113. 113.
    112 M. J. Danielson, O. H. Koski and J.Myero, J. Electrochem. Soc., 132 (1985) 296; 132 (1985) 2037.Google Scholar
  114. 114.
    113 S. N. Lvov, X. Y. Zhou, S. M. Ulyanov, H. Gao and D. D. Macdonald, “Potentiometric Measurement of Association Constant and pH in HCL(aq) High Temperature Solutions”, in Steam, Water, and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Ed. by P. R. Tremaine, P. G. Hill, D. E. Irish, and P. V. Palakrishnan, NRC Press, Ottawa, 2000, pp. 653-660.Google Scholar
  115. 115.
    114 D. D. Macdonald, I. Balachov and G. R. Engelhardt, Power Plant Chemistry, 1 (1999) 9.Google Scholar
  116. 116.
    115 L. B. Kriksunov, C. Liu and D.D. Macdonald. “Oxygen, Hydrogen and Redox Potential Combination Sensors for Supercritical Aqueous Systems,” Proc. 1st Int’l. Workshop Supercritical Water Oxidation, Amelia Island Plantation, FL, February, 1995.Google Scholar
  117. 117.
    116 L. B. Kriksunov, D. D.Macdonald and P. J.Millett, J. Electrochem. Soc., 141 (1994) 3002.CrossRefGoogle Scholar
  118. 118.
    117 G. S. Was, S. Teysseyre and Z. Jiao, “Corrosion of Austenitic Alloys in Supercritical Water,” Corrosion Science Section, Vol. 26, No. 11, (2006).Google Scholar
  119. 119.
    118 D. D. Macdonald, J. Electrochem. Soc., 139 (1992) 3434CrossRefGoogle Scholar
  120. 120.
    119 E. C. Potter and G. M. W. Mann, “Oxidation of Mild Steel in High Temperature Aqueous Systems,“ Proc. 1st Int. Congr. Met. Corros., Butterworths, London, Int. Union Pure Appl. Chem., 1961, p. 417.Google Scholar
  121. 121.
    120 A. G. Crouch and J. Robertson, Acta Metall. Mater., 38 (1990) 2567CrossRefGoogle Scholar
  122. 122.
    121 J. Davenport, L. J. Oblonsky, M. P. Ryan, and M. F. Toney, "The Structure of the Passive Film That Forms on iron in Aqueous Environments," J.Electrochem. Soc.. 147 (2000) 2162.CrossRefGoogle Scholar
  123. 123.
    122 P. Ampornrat and G. S. Was, “Oxidation of ferritic-martensitic alloys T91, HCM12A, and HT-9 in supercritical water”, Journal of Nuclear Materials 371 (2007) 1.CrossRefGoogle Scholar
  124. 124.
    123 Y. Chen, K. Sridharan, T. R. Allen, S. Ukai, “Microstructural examination of oxide layers formed on an oxide dispersion strengthened ferritic steel exposed to supercritical water,” Journal of Nuclear Materials 359 (2006) 50-58.CrossRefGoogle Scholar
  125. 125.
    124 A. T. Motta, A. D. Siwy, J.M. Kunkle, J. B. Bischoff, R. J. Comstock, Y. Chen, and T. R. Allen, “Microbeam Synchrotron Radiation Diffraction and Fluorescence Study of Oxide Layers Formed on 9Cr ODS Steel in Supercritical Water’.Google Scholar
  126. 126.
    125 A. Yilmazbayhan, Marcelo Gomes da Silva, Arthur Motta, Hyun-Gil Kim, Yong Hwan Jeong, Jeong-Yong Park, Robert Comstock, Barry Lai, Zhoughou Cai, “Characterization of Oxides Formed on Model Zirconium Alloys in 360oC Water Using Micro-Beam Synchrotron Radiation”, (2005)Google Scholar
  127. 127.
    126 Q. Peng, E. Gartner, J. T. Busby, A. T.Motta, and G. S. Was, “Corrosion Behavior of Model Zirconium Alloys in Deaerated Supercritical Water at 500oC,” Corrosion Science Section, 63 (6) (2007).Google Scholar
  128. 128.
    127 Y. H. Jeong, J. Y. Park, H. G. Kim, J. T. Busby, E. Gartner, M. Atzmon, G. S. Was, R. J. Comstock, Y. S. Chu, M. Gomes da Silva, A. Yilmazbayhan and A. T. Motta, “Corrosion of Zirconium-Based Fuel Cladding Alloys in Supercritical Water”, (2005).Google Scholar
  129. 129.
    128 A. T. Motta, A. D. Siwy, J. K. Kunkle, J. M. Bischoff, R. J. Comstock, Y. Chen, and T. R. Allen, “Microbeam Synchrotron Radiation Diffraction and Fluorescence Study of Oxide Layers Formed on 9Cr ODS Steel in Supercritical Water”, 17th ICC Meeting, Las Vegas, NV, Oct. 7-11, 2008.Google Scholar
  130. 130.
    129 X. Y. Guan, T. Zhu, D. D. Macdonald, “Application of electrochemical noise analysis in high subcritical and supercritical aqueous systems”, NACE paper No. 06449 (2006).Google Scholar
  131. 131.
    130 C. Liu, D. D. Macdonald, E. Medina, J. J. Villa and J. M. Bueno, “Probing Corrosion Activity in High Subcritical and Supercritical Water through Electrochemical Noise Analysis,” Corrosion, 50 (1994) 687.CrossRefGoogle Scholar
  132. 132.
    131 K. Wagner, W. Traud, Z. Elektrochem 44 (1938) 391.Google Scholar
  133. 133.
    132 N. Akiya, P. E. Savage, Chem. Rev. 102 (2002) 2725.CrossRefGoogle Scholar
  134. 134.
    133 L. B. Kriksunov, D. D. Macdonald; “Corrosion in Supercritical Water Oxidation Systems: A Phenomenological Analysis,” J. Electrochem. Soc . 142, 1995, 4069.CrossRefGoogle Scholar
  135. 135.
    134 X.Y. Zhou, S.N. Lvov, X.J. Wei, L.G. Benning, D.D. Macdonald, “Quantitative Evaluation of General Corrosion of Type 304 Stainless Steel in Subcritical and Supercritical Aqueous Solutions via Electrochemical Noise Analysis”, Corrosion Science, 44 (2002) 841.CrossRefGoogle Scholar
  136. 136.
    135 W. P. Iverson, J. Electrochem. Soc., 115 (1968) 617.CrossRefGoogle Scholar
  137. 137.
    136 J. L. Dawson, “Electrochemical Noise Measurement for Corrosion Applications,” ASTM Publication Code Number (PCN) 04-012770-27, p.3-35Google Scholar
  138. 138.
    137 R. A. Cottis, “Interpretation of Electrochemical Noise Data”, Corrosion, 57 (2001) 265.CrossRefGoogle Scholar
  139. 139.
    138 F. Mansfeld and H. Xiao, “Electrochemical Noise Analysis of Iron Exposed to NaCl Solutions of Different Corrosivity”, J. Electrochem. Soc., 140 (1993) 2205.CrossRefGoogle Scholar
  140. 140.
    139 D. D. Macdonald and L. Chen, unpublished data (1982).Google Scholar
  141. 141.
    140 X.-Y. Guan and D. D. Macdonald, Corrosion 65 (2009) 376CrossRefGoogle Scholar
  142. 142.
    141 P. Botella, C. Frayret, T. Jaszay, and M. H. Delville; “Experimental study, via current-potential curves, of the anodic behavior of Alloy C-276 and T60 titanium in chlorinated and oxygenated aqueous media under sub- to supercritical conditions” J. of Supercritical Fluids, 25 (2003) 269.Google Scholar
  143. 143.
    142 X.-Y. Guan and D. D. Macdonald, Corrosion 65 (2009) 427.CrossRefGoogle Scholar
  144. 144.
    143 K. J. Laidlaw, Chemical Kinetics, Harper ) Row, NY, 3rd Ed., 1987.Google Scholar
  145. 145.
    144 D. D Macdonald, “Effect of Pressure on the Rate of Corrosion of Metals in High Subcritical and Supercritical Aqueous Systems” J. Supercritical Fluids, 30 (2004) 375.Google Scholar
  146. 146.
    145 S. D. Iyer, and M. T. Klein, “Effect of pressure on the rate of butyronitrile hydrolysis in high-temperature water” J. Supercritical Fluids, 10 (1997) 191.CrossRefGoogle Scholar
  147. 147.
    146 B. Wu, M. T. Klein, and S. I. Sandler, “Solvent effects on reactions in supercritical fluids” Ind. Eng. Chem. Res., 30 (1991) 822.CrossRefGoogle Scholar
  148. 148.
    147 D. D. Macdonald and J. B. Hyne. “The Pressure Dependence of Benzyl Chloride Solvolysis in Aqueous Acetone and Aqueous DimethylSulfoxide.” Can. J. Chem., 48 (16) (1970) 2494.CrossRefGoogle Scholar
  149. 149.
  150. 150.
    149 D. D. Macdonald, D. D., P. C. Lu, M. Urquidi-Macdonald, and T. K. Yeh, “Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments.” Corrosion, 52(10), 768-785 (1996).Google Scholar
  151. 151.
    150 D. D. Macdonald and G. Cragnolino, “The Critical Potential for the IGSCC of Sensitized Type 304 SS in High Temperature Aqueous Systems”. Proc. 2nd Int’l. Symp. Env. Deg. Mat. Nucl. Power Syst. - Water Reactors. Monterey, CA, September 9-12, 1985.Google Scholar
  152. 152.
    151 Q. J. Peng, J. Kwon, and T. Shoji, “Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water,” J. Nuc. Mat. 324 (2004) 52.CrossRefGoogle Scholar
  153. 153.
    152 M. P. Manahan, Sr., D. D. Macdonald and A. J. Peterson, Jr., Corros. Sci., 37 (1995) 189.CrossRefGoogle Scholar
  154. 154.
    153 A. Wuensche and D. D. Macdonald, Corrosion 2001, Paper No. 01236, Houston, TX, 2001.Google Scholar
  155. 155.
    154 D. D. Macdonald and M. Urquidi-Macdonald, "The Electrochemistry of Nuclear Reactor Coolant Circuits," Encyclopedia of Electrochemistry, Ed. by A.J. Bard and M. Stratmann, Vol. 5; “Electrochemical Engineering,” Ed. by Digby D. Macdonald and Patrik Schmuki, Wiley-VCH Verlag GmbH ) Co. KGaA, Weinheim, 2007, pp. 665-720.Google Scholar
  156. 156.
    155 D. D. Macdonald, “Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors,” Corrosion, 48(3) (1992) 194.CrossRefGoogle Scholar
  157. 157.
    156 M. Vankeerbergen and D. D. Macdonald, Corros. Sci., 44 (2002) 1425.CrossRefGoogle Scholar
  158. 158.
    157 S. Hettiarachchi, “BWR SCC mitigation experiences with hydrogen water chemistry,” Proceedings of the Twelfth International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2005, Proceedings of the Twelfth International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors., NACE International, Houston, TX, 2005, p 685-701.Google Scholar
  159. 159.
    158 D. M. Bartels, K. Takahashi, J. A. Cline, T. W. Marin and C. D. Jonah, “Pulse Radiolysis of Supercritical Water. 3. Spectrum and Thermodynamics of the Hydrated Electron”, J. Phys. Chem. A, 109 (2004) 1299-1307.CrossRefGoogle Scholar
  160. 160.
    159 G. Wu, Y. Katsumura, Y. Muroya, X. Li, Y. Terada, “Pulse radiolysis of high temperature and supercritical water: experimental setup and e-observation” Radiation Physics and Chemistry, 60 (2001) 395-398.CrossRefGoogle Scholar
  161. 161.
    160 K. Ghandi and P.W. Percival, “Prediction of Rate Constants of Reactions of the Hydroxyl Radical in Water at High Temperatures and Pressures,” The Journal of Physical Chemistry A, 107(17) (2003).Google Scholar
  162. 162.
    161 J. Elliot, “Rate Constants and G-Values for the Simulation of the Radiolysis of Light Water Over the Range 0-300 oC”, Atomic Energy of Canada Ltd (AECL) Report No. 11073, Oct., 1994.Google Scholar
  163. 163.
    162 T. W. Marin, J. A. Cline, K. Takahashi D. M. Bartels and C. D. Jonah, “Pulse Radiolysis of Supercritical Water. 2. Reaction of Nitrobenzene with Hydrated Electrons and Hydroxyl Radicals,” J. Phys. Chem. A, 106 (2002) 12270.Google Scholar
  164. 164.
    163 M. Lin, Y. Katsumura, Y. Muroya, H. He, G. Wu, Z. Han, T. Miyazaki and H. Kudo, “Pulse Radiolysis Study on the Estimation of Radiolytic Yields of Water Decomposition Products in High-Tembperature and Supercritical Water: Use of Methyl Viologen as a Scavenger,” J. Phys. Chem. A, 108 (2004) 8287-8295.CrossRefGoogle Scholar
  165. 165.
    164 W. G. Burns and W. R. Marsh, “Radiation Chemistry of High Temperature (300 – 400oC) Water”, J. Chem. Soc. Faraday, 1 77 (1981) 197.Google Scholar
  166. 166.
    165 S. Teysseyre and G. S. Was, “Stress Corrosion Cracking of Austenitic Alloys in Supercritical Water”, Corrosion Science Section, (2006).Google Scholar
  167. 167.
    166 P. Andresen, Corrosion, 49 (1993) 714.CrossRefGoogle Scholar
  168. 168.
    167 D. D. Macdonald, Pure Appl. Chem., 71 (1999) 951.CrossRefGoogle Scholar
  169. 169.
    168 L. B. Kriksunov and D. D. Macdonald, J. Electrochem. Soc., 142 (1995) 4069.CrossRefGoogle Scholar
  170. 170.
    169 C. Liu, D. D. Macdonald, E. Medina, J. Villa, and J. Bueno, Corrosion, 50(9) (1994) 687.CrossRefGoogle Scholar
  171. 171.
    170 X. Y. Zhou, S. N. Lvov, X. J. Wei, L. G. Benning, and D. D. Macdonald, “Measuring Corrosion Rate of Type 304 SS in Subcritical and Supercritical Aqueous Solutions via Electrochemical Noise Analysis”, Corrosion, in preparation (2000).Google Scholar
  172. 172.
    171 S. N. Lvov, X. Y. Zhou, and D. D. Macdonald, J. Electroanal. Chem., 463 (1999) 146.CrossRefGoogle Scholar
  173. 173.
    172 M. J. Danielson, Corrosion, 39 (1983) 202.CrossRefGoogle Scholar

Copyright information

© Springer Science+Buisness Media, LLC 2012

Authors and Affiliations

  • Digby D. Macdonald
    • 1
  1. 1.Center for Electrochemical Science and TechnologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations