The Role of Microbial Endocrinology in Periodontal Disease

Chapter

Abstract

Periodontal (gum) disease is a major cause of tooth loss in the developed world and represents a diverse group of infections that are essentially inflammatory lesions mediated by host-parasite interactions. A vast array of both gram-positive and gram-negative organisms are responsible for the initiation and progression of periodontal diseases in susceptible individuals. Psychological stress is a risk factor that has been implicated in periodontal diseases and the understanding of a stress-hormone related mechanism of periodontal pathogen growth, proliferation and virulence expression could provide potential therapeutic strategies for the management of periodontal diseases, or more importantly, provide potential preventive measures. There has been limited research to date concerning the periodontal diseases in relation to local or systemic changes of stress-related hormones. Catacholamines, and in particular, norepinephrine-associated autoinducers, may be important in tipping the balance between acute and chronic infections or in the progression from periodontal health to disease. Taken as a whole, the data presented within this thesis suggest a role for stress hormones influencing bacteria involved in the pathogenesis of periodontal diseases.

Keywords

HPLC Dopamine Transportation Cortisol Nicotine 

References

  1. Aardal, E., Holm, A.C. 1995. Cortisol in saliva–reference ranges and relation to cortisol in serum. European Journal of Clinical Chemistry & Clinical Biochemistry 33, 927–932.Google Scholar
  2. Axtelius, B., Edwardsson, S., Theodorsson, E., Svensater, G., Attstrom, R. 1998. Presence of cortisol in gingival crevicular fluid. A pilot study. Journal of Clinical Periodontology 25, 929–932.PubMedCrossRefGoogle Scholar
  3. Belay, T., Aviles, H., Vance, M., Fountain, K., Sonnenfeld G. 2003. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species. Life Sci. 73, 1527–35.PubMedCrossRefGoogle Scholar
  4. Bowdre, J.H., Krieg, N.R., Hoffman, P.S., Smibert, R.M., 1976. Stimulatory effect of dihydroxyphenyl compounds on the aerotolerance of Spirillum volutans and Campylobacter fetus subspecies jejuni. Applied & Environmental Microbiology. 31, 127–133.Google Scholar
  5. Callingham, B.A., Barrand, M.A. 1979. The catecholamines. Adrenaline; noradrenaline; dopamine. London: Academic Press.Google Scholar
  6. Clarke, N.G., Shephard, B.C., Hirsch, R.S. 1981. The effects of intra-arterial epinephrine and nicotine on gingival circulation. Oral Surgery, Oral Medicine, Oral Pathology. 52, 577–582.CrossRefGoogle Scholar
  7. Cohen, M.M., Shusterman, S., Shklar, G. 1969. The effect of stressor agents on the grey lethal mouse strain periodontium. Journal of Periodontology 40, 462–466.PubMedGoogle Scholar
  8. Collins, L.M., Dawes, C. 1987. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. Journal of Dental Research. 66, 1300–1302.PubMedCrossRefGoogle Scholar
  9. Courant, P.R., Gibbons, R.J. 1966. Epinephrine potentiation of response to gingival crevice bacteria. Archives of Oral Biology 11, 737–740.PubMedCrossRefGoogle Scholar
  10. Dahlen, G., Lindhe, J., Sato, K., Hanamura, H., Okamoto, H. 1992. The effect of supragingival plaque control on the subgingival microbiota in subjects with periodontal disease. Journal of Clinical Periodontology. 19, 802–809.PubMedCrossRefGoogle Scholar
  11. Davidson, D.F., Fitzpatrick, J. 1985. A simple, optimised and rapid assay for urinary free catecholamines by HPLC with electrochemical detection. Annals of Clinical Biochemistry. 22, 297–303.PubMedGoogle Scholar
  12. El-Attar, T.M., 1968. Study of the metabolism of cortisol. Arthritis & Rheumatism 11.Google Scholar
  13. Evans, D.G., Miles, A.A., Niven, J.S.F., 1948. The enhancement of bacterial infections by adrenaline. British Journal of Experimental Pathology 29, 20–39.PubMedGoogle Scholar
  14. Forster, C.D., Macdonald, I.A., 1999. The assay of the catecholamine content of small volumes of human plasma. Biomedical Chromatography. 13, 209–215.PubMedCrossRefGoogle Scholar
  15. Freestone, P.P., Haigh, R.D., Williams, P.H., Lyte, M. 1999. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiology Letters. 172, 53–60.PubMedCrossRefGoogle Scholar
  16. Freestone, P.P., Lyte, M., Neal, C.P., Maggs, A.F., Haigh, R.D., Williams, P.H. 2000. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. Journal of Bacteriology. 182, 6091–6098.PubMedCrossRefGoogle Scholar
  17. Freestone, P.P., Williams, P.H., Haigh, R.D., Maggs, A.F., Neal, C.P. Lyte, M. 2002. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock 18, 465–470.PubMedCrossRefGoogle Scholar
  18. Glickman, T., Stone, I.C., Chawla, T.N. 1960. Effect of systemic administration of cortisone upon the periodontium. Journal of Periodontology. 31, 161–166.Google Scholar
  19. Goldhaber, P., Giddon, D.B. 1964. Present concepts concerning the etiology and treatment of acute necrotizing ulcerative gingivitis. International Dental Journal. 14, 468–496.Google Scholar
  20. Kolenbrander, P.E., Andersen, R.N., Blehert, D.S., Egland, P.G., Foster, J.S., Palmer, R.J., Jr. 2002. Communication among oral bacteria. Microbiology & Molecular Biology Reviews. 66, 486–505.CrossRefGoogle Scholar
  21. Kroes, I., Lepp, P.W., & Relman, D. A. 1999. Bacterial diversity within the human subgingival crevice. Proceedings of the National Academy of Sciences of the United States of America 96, 14547–14552.CrossRefGoogle Scholar
  22. Lavda, M., Clausnitzer, C.E., Walters, J.D. 2004. Distribution of systemic ciprofloxacin and doxycycline to gingiva and gingival crevicular fluid. Journal of Periodontology. 75, 1663–1667.PubMedCrossRefGoogle Scholar
  23. Loesche, W.J., Syed, S.A., Laughon, B.E., Stoll, J. 1982. The bacteriology of acute necrotizing ulcerative gingivitis. Journal of Periodontology. 53, 223–230.PubMedCrossRefGoogle Scholar
  24. Lyte, M., Arulanandam, B.P., Frank, C.D. 1996a. Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. Journal of Laboratory & Clinical Medicine. 128, 392–398.CrossRefGoogle Scholar
  25. Lyte, M., Arulanandam, B., Nguyen, K., Frank, C., Erickson, A. & Francis, D. 1997a. Norepinephrine induced growth and expression of virulence associated factors in enterotoxigenic and enterohemorrhagic strains of Escherichia coli. Advances in Experimental Medicine & Biology. 412, 331–339.CrossRefGoogle Scholar
  26. Lyte, M., Erickson, A.K., Arulanandam, B.P., Frank, C.D., Crawford, M.A., Francis, D.H. 1997b. Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochemical & Biophysical Research Communications. 232, 682–686.CrossRefGoogle Scholar
  27. Lyte, M. and Ernst, S. 1992. Catecholamine induced growth of gram negative bacteria. Life Sciences. 50, 203–212.PubMedCrossRefGoogle Scholar
  28. Lyte, M., Frank, C. D. and Green, B. T. 1996b. Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. FEMS Microbiology Letters. 139, 155–159.PubMedGoogle Scholar
  29. Marsh, P., Martin, M. 1999. Oral Microbiology: Oxford: Wright.Google Scholar
  30. Mitome, M., Shirakawa, T., Kikuiri, T., Oguchi, H. 1997. Salivary catecholamine assay for assessing anxiety in pediatric dental patients. Journal of Clinical Pediatric Dentistry. 21, 255–259.PubMedGoogle Scholar
  31. Moerman, E.J., De Schaepdryver, A.F. 1984. Quantitation of catecholamines in urine and in plasma. Clinica Chimica Acta. 139, 321–333.CrossRefGoogle Scholar
  32. Moore, W.E., Moore, L.V. 1994. The bacteria of periodontal diseases. Periodontology 2000 5, 66–77.PubMedCrossRefGoogle Scholar
  33. Paster, B.J., Boches, S.K., Galvin, J.L., Ericson, R.E., Lau, C.N., Levanos, V.A., Sahasrabudhe, A., Dewhirst, F.E. 2001. Bacterial diversity in human subgingival plaque. Journal of Bacteriology 183, 3770–3783.PubMedCrossRefGoogle Scholar
  34. Rahman, H., Reissbrodt, R. & Tschape, H. 2000. Effect of norepinephrine on growth of Salmonella and its enterotoxin production. Indian Journal of Experimental Biology. 38, 285–286.PubMedCrossRefGoogle Scholar
  35. Roberts A., Matthews JB., Socransky SS., Freestone PPE., Williams PH., Chapple ILC., 2002. Stress and the periodontal diseases: Effects of catecholamines on the growth of periodontal bacteria in vitro. Oral Microbiology & Immunology 17, 296–303.CrossRefGoogle Scholar
  36. Roberts A., Matthews JB., Socransky SS., Freestone PPE., Williams PH., Chapple ILC. 2005. Stress and the periodontal diseases: Growth responses of periodontal bacteria to Escherichia coli stress associated autoinducer and exogenous Fe. Oral Microbiology & Immunology. 20: 147–153.CrossRefGoogle Scholar
  37. Schachman, M. A., Rosenberg, P. A. and Linke, H. A. 1995. Quantitation of catecholamines in uninflamed human dental pulp tissues by high-performance liquid chromatography. Oral Surgery Oral Medicine Oral Pathology Oral Radiology & Endodontics 80, 83–86.CrossRefGoogle Scholar
  38. Shannon, I., Kilgore, W.G., T.J., O. L. 1974. Aetiology of acute necrotizing ulcerative gingivitis: a hypothetical explanation. Journal of Periodontology 45, 830–832.Google Scholar
  39. Socransky, S.S., Haffajee, A.D. 2000. Evidence of bacterial etiology: a historical perspective. Periodontology 5, 7–25.CrossRefGoogle Scholar
  40. Socransky, S.S., Haffajee, A.D., Cugini, M.A., Smith,C., Kent, R.L., Jr. 1998. Microbial complexes in subgingival plaque. Journal of Clinical Periodontology. 25, 134–144.PubMedCrossRefGoogle Scholar
  41. Taichman, N.S. 1964. The production of hemorrhagic necrosis by epinephrine and endotoxin in the hamster cheek pouch. Journal of Dental Research suppl 43, 795–796.Google Scholar
  42. Thomason, J.M., Ellis, J.S., Kelly, P.J., Seymour, R.A. 1997. Nifedipine pharmacological variables as risk factors for gingival overgrowth in organ-transplant patients. Clinical Oral Investigations 1, 35–39.PubMedCrossRefGoogle Scholar
  43. Tilakaratne, A., Soory, M. 1999. Androgen metabolism in response to oestradiol-17beta and progesterone in human gingival fibroblasts (HGF) in culture. Journal of Clinical Periodontology 26, 723–731.PubMedCrossRefGoogle Scholar
  44. Vanderas, A.P., Kavvadia, K., Papagiannoulis, L. 1998. Urinary catecholamine levels and gingivitis in children. Journal of Periodontology 69, 554–560.PubMedCrossRefGoogle Scholar
  45. Vining, R.F., Mcginley, R.A., Symons, R.G. 1983. Hormones in saliva: mode of entry and consequent implications for clinical interpretation. Clinical Chemistry. 29, 1752–1756.PubMedGoogle Scholar
  46. Weir, T.B., Smith, C.C.T., Round, J.M., Betteridge, D.J. 1986. Stability of catecholamines in whole blood, plasma, and platelets. Clinical Chemistry. 35, 882–883.Google Scholar
  47. Williams, K. 2006. http://info.med.yale.edu/ycc/research/proteomics.html. Yale-New Haven Hospital, Yale University. (Vol. 2006): Yale University, School of Medicine, New Haven, CT. 2006-02-02.
  48. Wooldridge, K.G., Williams, P.H. 1993. Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiology Reviews. 12, 325–348.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.School of DentistryThe University of ManchesterManchesterUK

Personalised recommendations