Interactions Between Bacteria and the Gut Mucosa: Do Enteric Neurotransmitters Acting on the Mucosal Epithelium Influence Intestinal Colonization or Infection?



The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include enteric neurons, whose activity is influenced by bacterial pathogens, and their secreted products. Neurotransmitters appear to influence epithelial associations with bacteria in the intestinal lumen. For example, internalization of Salmonella enterica and Escherichia coli O157:H7 into the Peyer’s patch mucosa of the small intestine is altered after the inhibition of neural activity with saxitoxin, a neuronal sodium channel blocker. Catecholamine neurotransmitters, such as dopamine and norepinephrine, also alter bacterial internalization in Peyer’s patches. In the large intestine, norepinephrine increases the mucosal adherence of E. coli. These neurotransmitter actions are mediated by well-defined catecholamine receptors situated on the basolateral membranes of epithelial cells rather than through direct interactions with luminal bacteria. Investigations of the involvement of neuroepithelial communication in the regulation of interactions between the intestinal mucosa and luminal bacteria will provide novel insights into the mechanisms underlying bacterial colonization and pathogenesis at mucosal surfaces.


Intestinal Mucosa Biogenic Amine Vasoactive Intestinal Peptide Enteric Nervous System Enteric Neuron 


  1. Al-Jahmany, A.A., Schultheiss, G., and Diener, M. 2004. Effects of dopamine on ion transport across the rat distal colon. Pflugers Arch. 448:605-612.PubMedCrossRefGoogle Scholar
  2. Anlauf, M., Schäfer, M.K., Eiden, L., and Weihe, E. 2003. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J. Comp. Neurol. 459:90-111.PubMedCrossRefGoogle Scholar
  3. Arciszewski, M., Pierzynowski, S., and Ekblad, E. 2005. Lipopolysaccharide induces cell death in cultured porcine myenteric neurons. Dig. Dis. Sci. 50:1661-1668.PubMedCrossRefGoogle Scholar
  4. Arciszewski, M.B., Sand, E., Ekblad, E. 2008. Vasoactive intestinal peptide rescues cultured rat myenteric neurons from lipopolysaccharide induced cell death. Regul Pept. 146:218-223.PubMedCrossRefGoogle Scholar
  5. Aschenbach, J.R., Seidler, T., Ahrens, F., Schrödl, W., Buchholz, I., Garz, B., Krüger, M., and Gäbel, G. 2003. Luminal salmonella endotoxin affects epithelial and mast cell function in the proximal colon of pigs. Scand. J. Gastroenterol. 38:719-726.PubMedCrossRefGoogle Scholar
  6. Bäck, N., Ahonen, M., Soinila, S., Kivilaakso, E., and Kiviluoto, T. 1995. Catecholamine-synthesizing enzymes in the rat stomach. Histochem. Cell Biol. 104:63-67.PubMedCrossRefGoogle Scholar
  7. Baglole, C.J., Davison, J.S., and Meddings, J.B. 2005. Epithelial distribution of neural receptors in the guinea pig small intestine. Can. J. Physiol. Pharmacol. 83:389-395.PubMedCrossRefGoogle Scholar
  8. Bansal, T., Englert, D., Lee, J., Hegde, M., Wood, T.K., and Jayaraman, A. 2007. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect. Immun. 75:4597-4607.PubMedCrossRefGoogle Scholar
  9. Barajon, I., Serrao, G., Arnaboldi, F., Opizzi, E., Ripamonti, G., Balsari, A., and Rumio, C. 2009. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J. Histochem. Cytochem. 57:1013-1023.PubMedCrossRefGoogle Scholar
  10. Bates, J.M., Akerlund, J., Mittge, E., and Guillemin, K. 2007. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2:371-382.PubMedCrossRefGoogle Scholar
  11. Bauer, E., Williams, B.A., Smidt, H., Verstegen, M.W., and Mosenthin, R. 2006. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr. Issues Intest. Microbiol. 7:35-51.PubMedGoogle Scholar
  12. Black, I.B., Bohn, M.C., Jonakait, G.M., and Kessler, J.A. 1981. Transmitter phenotypic expression in the embryo. Ciba Found. Symp. 83:177-193.PubMedGoogle Scholar
  13. Bogunovic, M., Davé, S.H., Tilstra, J.S., Chang, D.T., Harpaz, N., Xiong, H., Mayer, L.F., and Plevy, S.E. 2007. Enteroendocrine cells express functional Toll-like receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G1770-G1783.PubMedCrossRefGoogle Scholar
  14. Braun, T., Voland, P., Kunz, L., Prinz, C., and Gratzl, M. 2007. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology 132:1890-1901.PubMedCrossRefGoogle Scholar
  15. Brogden, K.A., Guthmiller, J.M., Salzet, M., and Zasloff, M. 2005. The nervous system and innate immunity: the neuropeptide connection. Nat. Immunol. 6:558-564.PubMedGoogle Scholar
  16. Brown, D.R., and O’Grady, S.M. 1997. Regulation of ion transport in the porcine intestinal tract by enteric neurotransmitters and hormones. Comp. Biochem. Physiol. 118A:309-317.CrossRefGoogle Scholar
  17. Brown, D.R., and O’Grady, S.M. 2008. The Ussing chamber and measurement of drug actions on mucosal ion transport. In: Current Protocols in Pharmacology, vol 41. Wiley, NY, pp. 7.12.1-7.12.17.Google Scholar
  18. Brown, D.R., and Price, L.D. 2007. Characterization of Salmonella enterica serovar Typhimurium DT104 invasion in an epithelial cell line (IPEC J2) from porcine small intestine. Vet. Microbiol. 120:328-333.PubMedCrossRefGoogle Scholar
  19. Brown, D.R., and Price, L.D. 2008. Catecholamines and sympathomimetic drugs decrease early Salmonella Typhimurium uptake into porcine Peyer’s patches. FEMS Immunol. Med. Microbiol 52:29-35.PubMedCrossRefGoogle Scholar
  20. Burns, A.J., and Thapar, N. 2006. Advances in ontogeny of the enteric nervous system. Neurogastroenterol. Motil. 18:876-887.PubMedCrossRefGoogle Scholar
  21. Butta, N., Larrucea, S., Gonzalez-Manchon, C., Alonso, S., and Parrilla, R. 2004. alpha-Adrenergic-mediated activation of human reconstituted fibrinogen receptor (integrin alphaIIbbeta3) in Chinese hamster ovary cells. Thromb. Haemost. 92:1368-1376.PubMedGoogle Scholar
  22. Chang, E.B., Field, M., and Miller, R.J. 1983. Enterocyte alpha 2-adrenergic receptors: yohimbine and p-aminoclonidine binding relative to ion transport. Am. J. Physiol. 244:G76-G82.PubMedGoogle Scholar
  23. Chen, C., Brown, D.R., Xie, Y., Green, B.T., and Lyte, M. 2003. Catecholamines modulate Escherichia coli O157:H7 adherence to murine cecal mucosa. Shock 20:183-188.PubMedCrossRefGoogle Scholar
  24. Chen, C., Lyte, M., Stevens, M.P., Vulchanova, L., and Brown, D.R. 2006. Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon. Eur. J. Pharmacol. 539:116-124.PubMedCrossRefGoogle Scholar
  25. Chiocchetti, R., Mazzuoli, G., Albanese, V., Mazzoni, M., Clavenzani, P., Lalatta-Costerbosa, G., Lucchi, M.L., Di Guardo, G., Marruchella, G., and Furness, J.B. 2008. Anatomical evidence for ileal Peyer’s patches innervation by enteric nervous system: a potential route for prion neuroinvasion? Cell Tissue Res. 332:185-194.PubMedCrossRefGoogle Scholar
  26. Clark, M.A., and Jepson, M.A. 2003. Intestinal M cells and their role in bacterial infection. Int. J. Med. Microbiol. 293:17-39.PubMedCrossRefGoogle Scholar
  27. Costa, M., Brookes, S.J., and Hennig, G.W. 2000. Anatomy and physiology of the enteric nervous system. Gut 47:15-19.Google Scholar
  28. Cotterell, D.J., Munday, K.A., and Poat, J.A. The binding of [3H]prazosin and [3H]clonidine to rat jejunal epithelial cell membranes. Biochem Pharmacol. 33:751-756.Google Scholar
  29. Crane, J.K., Choudhari, S.S., Naeher, T.M., and Duffey, M.E. 2006. Mutual enhancement of virulence by enterotoxigenic and enteropathogenic Escherichia coli. Infect. Immun. 74:1505-1515.PubMedCrossRefGoogle Scholar
  30. Defaweux, V., Dorban, G., Demonceau, C., Piret, J., Jolois, O., Thellin, O., Thielen, C., Heinen, E., and Antoine, N. 2005. Interfaces between dendritic cells, other immune cells, and nerve fibres in mouse Peyer’s patches: potential sites for neuroinvasion in prion diseases. Microsc. Res. Tech. 66:1-9.PubMedCrossRefGoogle Scholar
  31. Delahunty, M., Zennadi, R., and Telen, M.J. 2006. LW protein: a promiscuous integrin receptor activated by adrenergic signaling. Transfus. Clin. Biol. 13:44-49.PubMedCrossRefGoogle Scholar
  32. Ding, J., Magnotti, L.J, Huang, Q., Xu, D.Z., Condon, M.R., and Deitch, E.A. 2001. Hypoxia combined with Escherichia coli produces irreversible gut mucosal injury characterized by increased intestinal cytokine production and DNA degradation. Shock 16:189-195.PubMedCrossRefGoogle Scholar
  33. Donowitz, M., Cusolito, S., Battisti, L., Fogel, R., and Sharp, G.W. 1982. Dopamine stimulation of active Na and Cl absorption in rabbit ileum: interaction with alpha 2-adrenergic and specific dopamine receptors. J. Clin. Invest. 69:1008-1016.PubMedCrossRefGoogle Scholar
  34. Donowitz, M., Elta, G., Battisti, L., Fogel, R., and Label-Schwartz, E. 1983. Effect of dopamine and bromocriptine on rat ileal and colonic transport. Stimulation of absorption and reversal of cholera toxin-induced secretion. Gastroenterology 84:516-523.PubMedGoogle Scholar
  35. Downing, J.E., and Miyan, J.A. 2000. Neural immunoregulation: emerging roles for nerves in immune homeostasis and disease. Immunol. Today 21:281-289.PubMedCrossRefGoogle Scholar
  36. Dupont, J.R., Jervis, H.R., and Sprinz, H. 1965. Auerbach’s plexus of the rat cecum in relation to the germfree state. J. Comp. Neurol. 125:11-18.PubMedCrossRefGoogle Scholar
  37. Eisenhofer, G., Aneman, A., Friberg, P., Hooper, D., Fåndriks, L., Lonroth, H., Hunyady, B., and Mezey, E. 1997. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab. 82:3864-3871.PubMedCrossRefGoogle Scholar
  38. Elenkov, I.J., Wilder, R.L., Chrousos, G.P., and Vizi, E.S. 2000. The sympathetic nerve - an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52:595-638.PubMedGoogle Scholar
  39. Esmaili, A., Nazir, S.F., Borthakur, A., Yu, D., Turner, J.R., Saksena, S., Singla, A., Hecht, G.A., Alrefai, W.A., and Gill, R.K. 2009. Enteropathogenic Escherichia coli infection inhibits intestinal serotonin transporter function and expression. Gastroenterology 137:2074-2083.PubMedCrossRefGoogle Scholar
  40. Flierl, M.A., Rittirsch, D., Huber-Lang, M., Sarma, J.V., and Ward, P.A. 2008. Catecholamines - Crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening Pandora’s box? Mol. Med. 14:195-204.PubMedGoogle Scholar
  41. Freestone, P.P., Haigh, R.D., and Lyte, M. 2007a. Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. FEMS Microbiol. Lett. 269:221-228.PubMedCrossRefGoogle Scholar
  42. Freestone, P.P., Haigh, R.D., and Lyte, M. 2007b. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol. 7:8.PubMedCrossRefGoogle Scholar
  43. Furness, J.B. 2006. The Enteric Nervous System, Blackwell, Malden, MA.Google Scholar
  44. Fuxe, K., Ferré, S., Canals, M., Torvinen, M., Terasmaa, A., Marcellino, D., Goldberg, S.R., Staines, W., Jacobsen, K.X., Lluis, C., Woods, A.S., Agnati, L.F., and Franco, R. 2005. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J. Mol. Neurosci. 26:209-220.PubMedCrossRefGoogle Scholar
  45. Gonkowski, S., Kaminska, B., Bossowska, A., Korzon, M., Landowski, P., and Majewski, M. 2003. The influence of experimental Bacteroides fragilis infection on substance P and somatostatin-immunoreactive neural elements in the porcine ascending colon - a preliminary report. Folia Morphol. (Warsz) 62:455-457.Google Scholar
  46. Green, B.T., and Brown, D.R. 2006. Differential effects of clathrin and actin inhibitors on internalization of Escherichia coli and Salmonella choleraesuis in porcine jejunal Peyer’s patches. Vet. Microbiol. 113:117-122.PubMedCrossRefGoogle Scholar
  47. Green, B.T., Lyte, M., Kulkarni-Narla, A., and Brown, D.R. 2003. Neuromodulation of enteropathogen internalization in Peyer’s patches from porcine jejunum. J. Neuroimmunol. 141:74-82.PubMedCrossRefGoogle Scholar
  48. Green, B.T., Lyte, M., Chen, C., Xie, Y., Casey, M.A., Kulkarni-Narla, A., Vulchanova, L., and Brown, D.R. 2004. Adrenergic modulation of Escherichia coli O157:H7 adherence to the colonic mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G1238-G1246.PubMedCrossRefGoogle Scholar
  49. Gu, L., Wang, H., Guo, Y-L., and Zen, K. 2008. Heparin blocks the adhesion of E. coli O157:H7 to human colonic epithelial cells. Biochem. Biophys. Res. Comm. 369:1061-1064.PubMedCrossRefGoogle Scholar
  50. Hague, C., Lee, S.E., Chen, Z., Prinster, S.C., Hall, R.A., and Minneman, K.P. 2006. Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity. Mol. Pharmacol. 69:45-55.PubMedGoogle Scholar
  51. Handley, S.A., Dube, P.H., and Miller, V.L. 2006. Histamine signaling through the H2 receptor in the Peyer’s patch is important for controlling Yersinia enterocolitica infection. Proc. Natl. Acad. Sci. USA 103:9268-9273.PubMedCrossRefGoogle Scholar
  52. Harrison, C., and Traynor, J.R. 2003. The [35S]GTPgammaS binding assay: approaches and applications in pharmacology. Life Sci. 74:489-508.PubMedCrossRefGoogle Scholar
  53. Hecht, G., Marrero, J.A., Danilkovich, A., Matkowskyj, K.A., Savkovic, S.D., Koutsouris, A., and Benya, R.V. 1999. Pathogenic Escherichia coli increase Cl- secretion from intestinal epithelia by upregulating galanin-1 receptor expression. J. Clin. Invest. 104:253-262.PubMedCrossRefGoogle Scholar
  54. Hooper, L.V. 2004. Bacterial contributions to mammalian gut development. Trends Microbiol. 12:129-134.PubMedCrossRefGoogle Scholar
  55. Horger, S., Schultheiss, G., and Diener, M. 1998. Segment-specific effects of epinephrine on ion transport in the colon of the rat. Am. J. Physiol. 275:G1367-G1376.PubMedGoogle Scholar
  56. Hori, Y., Nihei, Y., Kurokawa, Y., Kuramasu, A., Makabe-Kobayashi, Y., Terui, T., Doi, H., Satomi, S., Sakurai, E., Nagy, A., Watanabe, T., and Ohtsu, H. 2002. Accelerated clearance of Escherichia coli in experimental peritonitis of histamine-deficient mice. J. Immunol. 169:1978-1983.PubMedGoogle Scholar
  57. Huidobro-Toro, J.P., and Donoso, M.V. 2004. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur. J. Pharmacol. 500:27-35.CrossRefGoogle Scholar
  58. Irving, P.M., and Gibson, P.R. 2008. Infections and IBD. Nat. Clin. Pract. Gastroenterol. Hepatol. 5:18-27.PubMedCrossRefGoogle Scholar
  59. Kennedy, B., and Ziegler, M.G. 2000. Ontogeny of epinephrine metabolic pathways in the rat: role of glucocorticoids. Int. J. Dev. Neurosci. 18:53-59.PubMedCrossRefGoogle Scholar
  60. Kin, N.W., and Sanders, V.M. 2006. It takes nerve to tell T and B cells what to do. J. Leukoc. Biol. 79:1093-1104.PubMedCrossRefGoogle Scholar
  61. Kulkarni-Narla, A., Beitz, A.J., and Brown, D.R. 1999. Catecholaminergic, cholinergic and peptidergic innervation of gut-associated lymphoid tissue in porcine jejunum and ileum. Cell Tissue Res. 298:275-286.PubMedCrossRefGoogle Scholar
  62. Lange, S., and Delbro, D.S. 1995. Adrenoceptor-mediated modulation of Evans blue dye permeation of rat small intestine. Dig. Dis. Sci. 40:2623-2629.PubMedCrossRefGoogle Scholar
  63. Lawley, T.D., Bouley, D.M., Hoy, Y.E., Gerke, C., Relman, D.A., and Monack, D.M. 2008. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 76:403-416.PubMedCrossRefGoogle Scholar
  64. Levite, M., and Chowers, Y. 2001. Nerve-driven immunity: neuropeptides regulate cytokine secretion of T cells and intestinal epithelial cells in a direct, powerful and contextual manner. Ann. Oncol. 12 Suppl 2:S19-S25.PubMedCrossRefGoogle Scholar
  65. Levite, M., Chowers, Y., Ganor, Y., Besser, M., Hershkovits, R., and Cahalon L. 2001. Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates beta1 integrin function. Eur. J. Immunol. 31:3504-3512.PubMedCrossRefGoogle Scholar
  66. Ley, R.E., Peterson, D.A., and Gordon, J.I. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837-848.PubMedCrossRefGoogle Scholar
  67. Li, Z.S., Pham, T.D., Tamir, H., Chen, J.J., and Gershon, M.D. 2004. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J. Neurosci. 24:1330-1339.PubMedCrossRefGoogle Scholar
  68. Linden, D.R., and Farrugia, G. 2008. Autonomic control of gastrointestinal function. In: Clinical Autonomic Disorders, 3rd ed. Low, P.A., and Benarroch, E.E. (eds.), Lippincott Williams and Wilkins, Baltimore, pp. 88-105.Google Scholar
  69. Llewellyn-Smith, I.J., Wilson, A.J., Furness, J.B., Costa, M., and Rush, R.A. 1981. Ultrastructural identification of noradrenergic axons and their distribution within the enteric plexuses of the guinea-pig small intestine. J. Neurocytol. 10:331-352.PubMedCrossRefGoogle Scholar
  70. Llewellyn-Smith, I.J., Furness, J.B., O’Brien, P.E., and Costa, M. 1984. Noradrenergic nerves in human small intestine. Distribution and ultrastructure. Gastroenterology 87:513-529.PubMedGoogle Scholar
  71. Lomax, A.E., Linden, D.R., Mawe, G.M., and Sharkey, K.A. 2006. Effects of gastrointestinal inflammation on enteroendocrine cells and enteric neural reflex circuits. Auton. Neurosci. 126-127:250-257.PubMedCrossRefGoogle Scholar
  72. Lomax, A.E., Sharkey, K.A., and Furness, J.B. 2010. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol. Motil. 22:7-18.PubMedGoogle Scholar
  73. Lundgren, O. 2002. Enteric nerves and diarrhoea. Pharmacol. Toxicol. 90:109-120.PubMedCrossRefGoogle Scholar
  74. Lundgren, O. 2004. Interface between the intestinal environment and the nervous system. Gut 53 Suppl 2:ii16-ii18.Google Scholar
  75. Macpherson, A.J., and Slack, E. 2007. The functional interactions of commensal bacteria with intestinal secretory IgA. Curr. Opin. Gastroenterol. 23:673-678.PubMedCrossRefGoogle Scholar
  76. Malo, M.S., Biswas, S., Abedrapo, M.A., Yeh, L., Chen, A., and Hodin, R.A. 2006. The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA Cell Biol. 25:684-695.PubMedCrossRefGoogle Scholar
  77. Matkowskyj, K.A., Danilkovich, A., Marrero, J., Savkovic, S.D., Hecht, G., and Benya, R.V. 2000. Galanin-1 receptor up-regulation mediates the excess colonic fluid production caused by infection with enteric pathogens. Nat. Med. 6:1048-1051.PubMedCrossRefGoogle Scholar
  78. Meredith, E.J., Chamba, A., Holder, M.J., Barnes, N.M., and Gordon, J. 2005. Close encounters of the monoamine kind: immune cells betray their nervous disposition. Immunology 115:289-295.PubMedCrossRefGoogle Scholar
  79. Milligan, G., Wilson, S., and López-Gimenez, J.F. 2005. The specificity and molecular basis of alpha 1-adrenoceptor and CXCR chemokine receptor dimerization. J. Mol. Neurosci. 26:161-168.PubMedCrossRefGoogle Scholar
  80. Motomura, Y., Ghia, J.E., Wang, H., Akiho, H., El-Sharkawy, R.T., Collins, M., Wan, Y., McLaughlin, J.T., and Khan, W.I. 2008. Enterochromaffin cell and 5-hydroxytryptamine responses to the same infectious agent differ in Th1 and Th2 dominant environments. Gut 57:475-481.PubMedCrossRefGoogle Scholar
  81. Mourad, F.H., and Nassar, C.F. 2000. Effect of vasoactive intestinal polypeptide (VIP) antagonism on rat jejunal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut 47:382-386.PubMedCrossRefGoogle Scholar
  82. Mowat, A.M. 2003. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3:331-341.PubMedCrossRefGoogle Scholar
  83. Neunlist, M., Barouk, J., Michel, K., Just, I., Oreshkova, T., Schemann, M., and Galmiche, J.P. 2003. Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G1049-G1055.PubMedGoogle Scholar
  84. Oh, C., Suzuki, S., Nakashima, I., Yamashita, K., and Nakano, K. 1988. Histamine synthesis by non-mast cells through mitogen-dependent induction of histidine decarboxylase. Immunology 65:143-148.PubMedGoogle Scholar
  85. O’Hara, J.R., Skinn, A.C., MacNaughton, W.K., Sherman, P.M., and Sharkey, K.A. 2006. Consequences of Citrobacter rodentium infection on enteroendocrine cells and the enteric nervous system in the mouse colon. Cell. Microbiol. 8:646-660.PubMedCrossRefGoogle Scholar
  86. Olsen, P.S., Poulsen, S.S., and Kirkegaard, P. 1985. Adrenergic effects on secretion of epidermal growth factor from Brunner’s glands. Gut 26:920-927.PubMedCrossRefGoogle Scholar
  87. Palazzo, M., Balsari, A., Rossini, A., Selleri, S., Calcaterra, C., Gariboldi, S., Zanobbio, L., Arnaboldi, F., Shirai, Y.F., Serrao, G., and Rumio, C. 2007. Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. J. Immunol. 178:4296-4303.PubMedGoogle Scholar
  88. Pascual, D.W. 2004. The role of tachykinins on bacterial infections. Front. Biosci. 9:3209-3217.PubMedCrossRefGoogle Scholar
  89. Patel, P., Nankova, B.B., LaGamma, E.F. 2005. Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element. Brain Res. Dev. Brain Res.160:53-62.PubMedCrossRefGoogle Scholar
  90. Pettersson, G. 1979. The neural control of the serotonin content in mammalian enterochromaffin cells. Acta Physiol. Scand. Suppl. 470:1-30.PubMedGoogle Scholar
  91. Pidsudko, Z., Kaleczyc, J., Wasowicz, K., Sienkiewicz, W., Majewski, M., Zajac, W., and Lakomy, M. 2008. Distribution and chemical coding of intramural neurons in the porcine ileum during proliferative enteropathy. J. Comp. Pathol. 138:23-31.PubMedCrossRefGoogle Scholar
  92. Rumio, C., Besusso, D., Arnaboldi, F., Palazzo, M., Selleri, S., Gariboldi, S., Akira, S., Uematsu, S., Bignami, P., Ceriani, V., Ménard, S., and Balsari, A. 2006. Activation of smooth muscle and myenteric plexus cells of jejunum via Toll-like receptor 4. J. Cell Physiol. 208:47-54.PubMedCrossRefGoogle Scholar
  93. Schäfermeyer, A., Gratzl, M., Rad, R., Dossumbekova, A., Sachs, G., and Prinz, C. 2004. Isolation and receptor profiling of ileal enterochromaffin cells. Acta Physiol. Scand. 182:53-62.PubMedCrossRefGoogle Scholar
  94. Schmidt, P.T., Eriksen, L., Loftager, M., Rasmussen, T.N., and Holst, J.J. 1999. Fast acting nervous regulation of immunoglobulin A secretion from isolated perfused porcine ileum. Gut 45:679-685.PubMedCrossRefGoogle Scholar
  95. Schmidt, L.D., Xie, Y., Lyte, M., Vulchanova, L., and Brown, D.R. 2007. Autonomic neurotransmitters modulate immunoglobulin A secretion in porcine colonic mucosa. J. Neuroimmunol. 185:20-28.PubMedCrossRefGoogle Scholar
  96. Schreiber, K.L., and Brown, D.R. 2005. Adrenocorticotrophic hormone modulates Escherichia coli O157:H7 adherence to porcine colonic mucosa. Stress 8:185-190.PubMedCrossRefGoogle Scholar
  97. Schreiber, K.L., Price, L.D., and Brown, D.R. 2007. Evidence for neuromodulation of enteropathogen invasion in the intestinal mucosa. J. Neuroimmune Pharmacol. 2:329-337.PubMedCrossRefGoogle Scholar
  98. Scott, L.D., and Cahall, D.L. 1982. Influence of the interdigestive myoelectric complex on enteric flora in the rat. Gastroenterology 82:737-745.PubMedGoogle Scholar
  99. Senard, J.M., Langin, D., Estan, L., and Paris, H. 1990. Identification of alpha 2-adrenoceptors and non-adrenergic idazoxan binding sites in rabbit colon epithelial cells. Eur. J. Pharmacol. 191:59-68.PubMedCrossRefGoogle Scholar
  100. Sharma, R., and Schumacher, U. 1996. The diet and gut microflora influence the distribution of enteroendocrine cells in the rat intestine. Experientia 52:664-670.PubMedCrossRefGoogle Scholar
  101. Shibolet, O., and Podolsky, D.K. 2007. TLRs in the Gut. IV. Negative regulation of Toll-like receptors and intestinal homeostasis: addition by subtraction. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G1469-G1473.PubMedCrossRefGoogle Scholar
  102. Simon, C., and Ternaux, J.P.1990. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa. J. Pharmacol. Exp. Ther. 253:825-832.PubMedGoogle Scholar
  103. Sinclair, J.F., Dean-Nystrom, E.A., and O’Brien, A.D. 2006. The established intimin receptor Tir and the putative eucaryotic intimin receptors nucleolin and beta1 integrin localize at or near the site of enterohemorrhagic Escherichia coli O157:H7 adherence to enterocytes in vivo. Infect. Immun. 74:1255-1265.PubMedCrossRefGoogle Scholar
  104. Snipes, R.L. 1997. Intestinal absorptive surface in mammals of different sizes. Adv. Anat. Embryol. Cell Biol. 138:III-VIII, 1-90.PubMedGoogle Scholar
  105. Spiller, R.C. 2002. Role of nerves in enteric infection. Gut 51:759-762.PubMedCrossRefGoogle Scholar
  106. Sternini, C., Anselmi, L., and Rozengurt, E. 2008. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 15:73-78.PubMedCrossRefGoogle Scholar
  107. Strange, P.G. 2008. Signaling mechanisms of GPCR ligands. Curr. Opin. Drug Discov. Devel. 11:196-202.PubMedGoogle Scholar
  108. Straub, R.H., Wiest, R., Strauch, U.G., Härle, P., and Schölmerich, J. 2006. The role of the sympathetic nervous system in intestinal inflammation. Gut 55:1640-1649.PubMedCrossRefGoogle Scholar
  109. Straub, R.H., Grum, F., Strauch, U.G., Capellino, S., Bataille, F., Bleich, A., Falk, W., Schölmerich, J., and Obermeier, F. 2008. Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57:911-921.PubMedCrossRefGoogle Scholar
  110. Suzuki, K., Ha, S.A., Tsuji, M., and Fagarasan, S. 2007. Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Semin. Immunol. 19:127-135.PubMedCrossRefGoogle Scholar
  111. Timmermans, J.P., Adriaensen, D., Cornelissen, W., and Scheuermann, D.W. 1997. Structural organization and neuropeptide distribution in the mammalian enteric nervous system, with special attention to those components involved in mucosal reflexes. Comp. Biochem. Physiol. A Physiol. 118:331-340.PubMedCrossRefGoogle Scholar
  112. Timmermans, J.P., Hens, J., and Adriaensen, D. 2001. Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat. Rec. 262:71-78.PubMedCrossRefGoogle Scholar
  113. Tutton, P.J., and Barkla, D.H. 1977. The influence of adrenoceptor activity on cell proliferation in colonic crypt epithelium and in colonic adenocarcinomata. Virchows Arch. B Cell. Pathol. 24:139-146.PubMedGoogle Scholar
  114. Tutton, P.J., and Helme, R.D. 1974. The influence of adrenoreceptor activity on crypt cell proliferation in the rat jejunum. Cell Tissue Kinet. 7:125-136.PubMedGoogle Scholar
  115. Uribe, A., Alam, M., Johansson, O., Midtvedt, T., and Theodorsson, E. 1994. Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology 107:1259-1269.PubMedGoogle Scholar
  116. Valet, P., Senard, J.M., Devedjian, J.C., Planat, V., Salomon, R., Voisin, T., Drean, G., Couvineau, A., Daviaud, D., Denis, C., Laburthe, M., and Paris, H. 1993. Characterization and distribution of alpha 2-adrenergic receptors in the human intestinal mucosa. J. Clin. Invest. 91:2049-2057.PubMedCrossRefGoogle Scholar
  117. Vasina, V., Barbara, G., Talamonti, L., Stanghellini, V., Corinaldesi, R., Tonini, M., De Ponti, F., and De Giorgio, R. 2006. Enteric neuroplasticity evoked by inflammation. Auton. Neurosci. 126-127:264-272.PubMedCrossRefGoogle Scholar
  118. Vieira-Coelho, M.A., and Soares-da-Silva, P. 1993. Dopamine formation, from its immediate precursor 3,4-dihydroxyphenylalanine, along the rat digestive tract. Fundam. Clin. Pharmacol. 7:235-243.PubMedCrossRefGoogle Scholar
  119. Vieira-Coelho, M.A., and Soares-da-Silva, P. 1998. Alpha2-adrenoceptors mediate the effect of dopamine on adult rat jejunal electrolyte transport. Eur. J. Pharmacol. 356:59-65.PubMedCrossRefGoogle Scholar
  120. Vieira-Coelho, M.A., and Soares-da-Silva, P. 2001. Comparative study on sodium transport and Na+,K+-ATPase activity in Caco-2 and rat jejunal epithelial cells: effects of dopamine. Life Sci. 69:1969-1981.PubMedCrossRefGoogle Scholar
  121. Vlisidou, I., Lyte, M., van Diemen, P.M., Hawes, P., Monaghan, P., Wallis, T.S., and Stevens, M.P. 2004. The neuroendocrine stress hormone norepinephrine augments Escherichia coli O157:H7-induced enteritis and adherence in a bovine ligated ileal loop model of infection. Infect. Immun. 72:5446-5451.PubMedCrossRefGoogle Scholar
  122. Vulchanova, L., Casey, M.A., Crabb, G.W., Kennedy, W.R., and Brown, D.R. 2007. Anatomical evidence for enteric neuroimmune interactions in Peyer’s patches. J. Neuroimmunol. 185:64-74.PubMedCrossRefGoogle Scholar
  123. Walters, N., Trunkle, T., Sura, M., and Pascual, D.W. 2005. Enhanced immunoglobulin A response and protection against Salmonella enterica serovar Typhimurium in the absence of the substance P receptor. Infect. Immun. 73:317-324.PubMedCrossRefGoogle Scholar
  124. Wang, B., Mao, Y.K., Diorio, C., Wang, L., Huizinga, J.D., Bienenstock, J., Kunze, W. 2010. Lactobacillus reuteri ingestion and IK(Ca) channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol. Motil. 22:98-107.PubMedCrossRefGoogle Scholar
  125. Wang, Y.F., Mao, Y.K., Xiao, Q., Daniel, E.E., Borkowski, K.R., McDonald, T.J. 1997. The distribution of NPY-containing nerves and the catecholamine contents of canine enteric nerve plexuses. Peptides 18:221-234.PubMedCrossRefGoogle Scholar
  126. Wang, H., Steeds, J., Motomura, Y., Deng, Y., Verma-Gandhu, M., El-Sharkawy, R.T., McLaughlin, J.T., Grencis, R.K., and Khan, W.I. 2007. CD4+ T cell-mediated immunological control of enterochromaffin cell hyperplasia and 5-hydroxytryptamine production in enteric infection. Gut 56:949-957.PubMedCrossRefGoogle Scholar
  127. Wood, J.D. 2007. Effects of bacteria on the enteric nervous system: implications for the irritable bowel syndrome. J. Clin. Gastroenterol. 41(5 Suppl 1):S7-S19.PubMedCrossRefGoogle Scholar
  128. Wu, Z.C., and Gaginella, T.S. 1981. Release of [3H]norepinephrine from nerves in rat colonic mucosa: effects of norepinephrine and prostaglandin E2. Am. J. Physiol. 241:G416-G421.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.United States Department of AgricultureResearch Pharmacologist, Agricultural Research ServiceLoganUSA
  2. 2.Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulUSA

Personalised recommendations