Molecular Profiling: Catecholamine Modulation of Gene Expression in Enteropathogenic Bacteria

  • Bradley L. Bearson
  • Scot E. Dowd


Investigations of the enteric pathogens Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Vibrio parahaemolyticus have demonstrated that these bacteria can respond to the presence of catecholamines including norepinephrine and/or epinephrine in their environment by modulating gene expression and exhibiting various phenotypes. For example, one of the most extensively investigated phenotypes following exposure of E. coli and S. Typhimurium to norepinephrine is enhanced bacterial growth in a serum-based medium. Norepinephrine-enhanced bacterial growth is due, in part, to increased iron availability, and transcriptional profiling indicates differential expression of genes encoding iron acquisition and transport proteins. The motility of E. coli and S. Typhimurium is also enhanced in the presence of norepinephrine or epinephrine and increased flagellar gene expression has been described. In E. coli O157:H7, norepinephrine exposure increases expression of the genes encoding Shiga toxin and operons within the locus of enterocyte effacement (LEE). For V. parahaemolyticus, norepinephrine stimulates cytotoxic activity against Caco-2 cells by increasing the transcription of type III secretion system 1 genes. Alterations in the transcriptional response of enteric bacteria to catecholamine exposure in vivo may enhance bacterial colonization and pathogen virulence. This chapter will review the current literature on the transcriptional response of these enteropathogens to catecholamines.


Shiga Toxin Iron Acquisition Iron Bioavailability Flagellar Gene Stx2 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert, M. J., Faruque, S. M., Faruque, A. S., Bettelheim, K. A., Neogi, P. K., Bhuiyan, N. A. and Kaper, J. B. 1996. Controlled study of cytolethal distending toxin-producing Escherichia coli infections in Bangladeshi children. J. Clin. Microbiol. 34:717-719.PubMedGoogle Scholar
  2. Ames, B. N., McCann, J. and Yamasaki, E. 1975. Proceedings: carcinogens are mutagens: a simple test system. Mutat. Res. 33:27-28.PubMedCrossRefGoogle Scholar
  3. Bansal, T., Englert, D., Lee, J., Hegde, M., Wood, T. K. and Jayaraman, A. 2007. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect. Immun. 75:4597-4607.PubMedCrossRefGoogle Scholar
  4. Bearson, B. L. and Bearson, S. M. 2008. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb. Pathog. 44:271-278.PubMedCrossRefGoogle Scholar
  5. Bearson, B. L., Bearson, S. M. D., Uthe, J. J., Dowd, S. E., Houghton, J. O., Lee, I. S., Toscano, M. J. and Lay, D. C. 2008. Iron regulated genes of Salmonella enterica serovar Typhimurium in response to norepinephrine and the requirement of fepDGC for norepinephrine-enhanced growth. Microbes Infect. 10:807-816.PubMedCrossRefGoogle Scholar
  6. Bjedov, I., Tenaillon, O., Gerard, B., Souza, V., Denamur, E., Radman, M., Taddei, F. and Matic, I. 2003. Stress-induced mutagenesis in bacteria. Science 300:1404-1409.PubMedCrossRefGoogle Scholar
  7. Bowdre, J. H., Krieg, N. R., Hoffman, P. S. and Smibert, R. M. 1976. Stimulatory effect of dihydroxyphenyl compounds on the aerotolerance of Spirillum volutans and Campylobacter fetus subspecies jejuni. Appl. Environ. Microbiol. 31:127-133.PubMedGoogle Scholar
  8. Burton, C. L., Chhabra, S. R., Swift, S., Baldwin, T. J., Withers, H., Hill, S. J. and Williams, P. 2002. The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect. Immun. 70:5913-5923.PubMedCrossRefGoogle Scholar
  9. Chen, C., Brown, D. R., Xie, Y., Green, B. T. and Lyte, M. 2003. Catecholamines modulate Escherichia coli O157:H7 adherence to murine cecal mucosa. Shock 20:183-188.PubMedCrossRefGoogle Scholar
  10. Chen, C., Lyte, M., Stevens, M. P., Vulchanova, L. and Brown, D. R. 2006. Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon. Eur. J. Pharmacol. 539:116-124.PubMedCrossRefGoogle Scholar
  11. Chilcott, G. S. and Hughes, K. T. 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64:694-708.PubMedCrossRefGoogle Scholar
  12. Diggle, S. P., Matthijs, S., Wright, V. J., Fletcher, M. P., Chhabra, S. R., Lamont, I. L., Kong, X., Hider, R. C., Cornelis, P., Camara, M. and Williams, P. 2007. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem. Biol. 14:87-96.PubMedCrossRefGoogle Scholar
  13. Dowd, S. E. 2007. Escherichia coli O157:H7 gene expression in the presence of catecholamine norepinephrine. FEMS Microbiol. Lett. 273:214-223.PubMedCrossRefGoogle Scholar
  14. Dowd, S. E., Killinger-Mann, K., Blanton, J., San Francisco, M. and Brashears, M. 2007. Positive adaptive state: microarray evaluation of gene expression in Salmonella enterica Typhimurium exposed to nalidixic acid. Foodborne Pathog. Dis. 4:187-200.PubMedCrossRefGoogle Scholar
  15. Dowd, S. E. and Lyte, M. 2007. Microarray Analysis of Norepinephrine-Escherichia coli O157:H7 Gene Expression in a Porcine Ligated Ileal Loop Model and Comparison to In Vitro data: In Vivo Veritas? 107th General Meeting of the American Society for Microbiology B-256.Google Scholar
  16. Elliott, S. J. and Kaper, J. B. 1997. Role of type 1 fimbriae in EPEC infections. Microb. Pathog. 23:113-118.PubMedCrossRefGoogle Scholar
  17. Elliott, S. J., Sperandio, V., Giron, J. A., Shin, S., Mellies, J. L., Wainwright, L., Hutcheson, S. W., McDaniel, T. K. and Kaper, J. B. 2000. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 68:6115-6126.PubMedCrossRefGoogle Scholar
  18. Elliott, S. J., Wainwright, L. A., McDaniel, T. K., Jarvis, K. G., Deng, Y. K., Lai, L. C., McNamara, B. P., Donnenberg, M. S. and Kaper, J. B. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28:1-4.PubMedCrossRefGoogle Scholar
  19. Fischbach, M. A., Lin, H., Liu, D. R. and Walsh, C. T. 2005. In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc. Natl. Acad. Sci. U. S. A. 102:571-576.PubMedCrossRefGoogle Scholar
  20. Fischbach, M. A., Lin, H., Zhou, L., Yu, Y., Abergel, R. J., Liu, D. R., Raymond, K. N., Wanner, B. L., Strong, R. K., Walsh, C. T., Aderem, A. and Smith, K. D. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl. Acad. Sci. U. S. A. 103:16502-16507.PubMedCrossRefGoogle Scholar
  21. Freestone, P. P., Haigh, R. D., Williams, P. H. and Lyte, M. 1999. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol. Lett. 172:53-60.PubMedCrossRefGoogle Scholar
  22. Freestone, P. P., Haigh, R. D., Williams, P. H. and Lyte, M. 2003. Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagic Escherichia coli. FEMS Microbiol. Lett. 222:39-43.PubMedCrossRefGoogle Scholar
  23. Freestone, P. P., Lyte, M., Neal, C. P., Maggs, A. F., Haigh, R. D. and Williams, P. H. 2000. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J. Bacteriol. 182:6091-6098.PubMedCrossRefGoogle Scholar
  24. Gaille, C., Reimmann, C. and Haas, D. 2003. Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. J. Biol. Chem. 278:16893-16898.PubMedCrossRefGoogle Scholar
  25. Giron, J. A., Torres, A. G., Freer, E. and Kaper, J. B. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44:361-379.PubMedCrossRefGoogle Scholar
  26. Goetz, D. H., Holmes, M. A., Borregaard, N., Bluhm, M. E., Raymond, K. N. and Strong, R. K. 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10:1033-1043.PubMedCrossRefGoogle Scholar
  27. Green, B. T., Lyte, M., Chen, C., Xie, Y., Casey, M. A., Kulkarni-Narla, A., Vulchanova, L. and Brown, D. R. 2004. Adrenergic modulation of Escherichia coli O157:H7 adherence to the colonic mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G1238-G1246.PubMedCrossRefGoogle Scholar
  28. Hantke, K., Nicholson, G., Rabsch, W. and Winkelmann, G. 2003. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc. Natl. Acad. Sci. U. S. A. 100:3677-3682.PubMedCrossRefGoogle Scholar
  29. Hare, J. M., Perkins, S. N. and Gregg-Jolly, L. A. 2006. A constitutively expressed, truncated umuDC operon regulates the recA-dependent DNA damage induction of a gene in Acinetobacter baylyi strain ADP1. Appl. Environ. Microbiol. 72:4036-4043.PubMedCrossRefGoogle Scholar
  30. Jordan, D. M., Cornick, N., Torres, A. G., Dean-Nystrom, E. A., Kaper, J. B. and Moon, H. W. 2004. Long polar fimbriae contribute to colonization by Escherichia coli O157:H7 in vivo. Infect. Immun. 72:6168-6171.PubMedCrossRefGoogle Scholar
  31. Kaper, J. B. 1998. Enterohemorrhagic Escherichia coli. Curr. Opin. Microbiol. 1:103-108.PubMedCrossRefGoogle Scholar
  32. Kaper, J. B., McDaniel, T. K., Jarvis, K. G. and Gomez-Duarte, O. 1997. Genetics of virulence of enteropathogenic E. coli. Adv. Exp. Med. Biol. 412:279-287.PubMedGoogle Scholar
  33. Keller, K. L., Overbeck-Carrick, T. L. and Beck, D. J. 2001. Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination. Mutat. Res. 486:21-29.PubMedCrossRefGoogle Scholar
  34. Kendall, M. M., Rasko, D. A. and Sperandio, V. 2007. Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. Infect. Immun. 75:4875-4884.PubMedCrossRefGoogle Scholar
  35. Kim, B. H., Kim, H. G., Bae, G. I., Bang, I. S., Bang, S. H., Choi, J. H. and Park, Y. K. 2004. Expression of cspH upon nutrient up-shift in Salmonella enterica serovar Typhimurium. Arch. Microbiol. 182:37-43.PubMedCrossRefGoogle Scholar
  36. Kim, E. J., Wang, W., Deckwer, W. D. and Zeng, A. P. 2005. Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151:1127-1138.PubMedCrossRefGoogle Scholar
  37. Kinney, K. S., Austin, C. E., Morton, D. S. and Sonnenfeld, G. 2000. Norepinephrine as a growth stimulating factor in bacteria – mechanistic studies. Life Sci. 67:3075-3085.PubMedCrossRefGoogle Scholar
  38. Laaberki, M. H., Janabi, N., Oswald, E. and Repoila, F. 2006. Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: interplay between Ler, GrlA, HNS and RpoS. Int. J. Med. Microbiol. 296:197-210.PubMedCrossRefGoogle Scholar
  39. LeClerc, J. E. and Cebula, T. A. 2000. Pseudomonas survival strategies in cystic fibrosis. Science 289:391-392.PubMedCrossRefGoogle Scholar
  40. LeClerc, J. E., Li, B., Payne, W. L. and Cebula, T. A. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208-1211.PubMedCrossRefGoogle Scholar
  41. Luo, M., Lin, H., Fischbach, M. A., Liu, D. R., Walsh, C. T. and Groves, J. T. 2006. Enzymatic tailoring of enterobactin alters membrane partitioning and iron acquisition. ACS Chem. Biol. 1:29-32.PubMedCrossRefGoogle Scholar
  42. Lyte, M. 2004. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 12:14-20.PubMedCrossRefGoogle Scholar
  43. Lyte, M., Arulanandam, B. P. and Frank, C. D. 1996. Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. J. Lab. Clin. Med. 128:392-398.PubMedCrossRefGoogle Scholar
  44. Lyte, M. and Ernst, S. 1992. Catecholamine induced growth of gram negative bacteria. Life Sci. 50:203-212.PubMedCrossRefGoogle Scholar
  45. Lyte, M. and Ernst, S. 1993. Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem. Biophys. Res. Commun. 190:447-452.PubMedCrossRefGoogle Scholar
  46. Muller, C. M., Dobrindt, U., Nagy, G., Emody, L., Uhlin, B. E. and Hacker, J. 2006. Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J. Bacteriol. 188:5428-5438.PubMedCrossRefGoogle Scholar
  47. Nakanishi, N., Abe, H., Ogura, Y., Hayashi, T., Tashiro, K., Kuhara, S., Sugimoto, N. and Tobe, T. 2006. ppGpp with DksA controls gene expression in the locus of enterocyte effacement (LEE) pathogenicity island of enterohaemorrhagic Escherichia coli through activation of two virulence regulatory genes. Mol. Microbiol. 61:194-205.PubMedCrossRefGoogle Scholar
  48. Nakano, M., Takahashi, A., Sakai, Y. and Nakaya, Y. 2007. Modulation of pathogenicity with norepinephrine related to the type III secretion system of Vibrio parahaemolyticus. J. Infect. Dis. 195:1353-1360.PubMedCrossRefGoogle Scholar
  49. Perna, N. T., Plunkett, G., 3rd, Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Posfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., Dimalanta, E. T., Potamousis, K. D., Apodaca, J., Anantharaman, T. S., Lin, J., Yen, G., Schwartz, D. C., Welch, R. A. and Blattner, F. R. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529-533.PubMedCrossRefGoogle Scholar
  50. Plunkett, G., 3rd, Rose, D. J., Durfee, T. J. and Blattner, F. R. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181:1767-1778.PubMedGoogle Scholar
  51. Rahman, H., Reissbrodt, R. and Tschape, H. 2000. Effect of norepinephrine on growth of Salmonella and its enterotoxin production. Indian J. Exp. Biol. 38:285-286.PubMedGoogle Scholar
  52. Renaud, M. and Miget, A. 1930. Role favorisant des perturbations locales causees par l’ adrenaline sur le developpement des infections microbiennes. C. R. Seances Soc. Biol. Fil. 103:1052-1054.Google Scholar
  53. Sharma, V. K. and Zuerner, R. L. 2004. Role of hha and ler in transcriptional regulation of the esp operon of enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 186:7290-7301.PubMedCrossRefGoogle Scholar
  54. Smith, K. D. 2007. Iron metabolism at the host pathogen interface: Lipocalin 2 and the pathogen-associated iroA gene cluster. Int. J. Biochem. Cell Biol. 39:1776-1780.PubMedCrossRefGoogle Scholar
  55. Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. and Kaper, J. B. 2003. Bacteria-host communication: the language of hormones. Proc. Natl. Acad. Sci. U. S. A. 100:8951-8956.PubMedCrossRefGoogle Scholar
  56. Tobe, T., Ando, H., Ishikawa, H., Abe, H., Tashiro, K., Hayashi, T., Kuhara, S. and Sugimoto, N. 2005. Dual regulatory pathways integrating the RcsC-RcsD-RcsB signalling system control enterohaemorrhagic Escherichia coli pathogenicity. Mol. Microbiol. 58:320-333.PubMedCrossRefGoogle Scholar
  57. Torres, A. G., Kanack, K. J., Tutt, C. B., Popov, V. and Kaper, J. B. 2004. Characterization of the second long polar (LP) fimbriae of Escherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol. Lett. 238:333-344.PubMedGoogle Scholar
  58. Vinella, D., Albrecht, C., Cashel, M. and D’Ari, R. 2005. Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol. Microbiol. 56:958-970.PubMedCrossRefGoogle Scholar
  59. Vlisidou, I., Lyte, M., van Diemen, P. M., Hawes, P., Monaghan, P., Wallis, T. S. and Stevens, M. P. 2004. The neuroendocrine stress hormone norepinephrine augments Escherichia coli O157:H7-induced enteritis and adherence in a bovine ligated ileal loop model of infection. Infect. Immun. 72:5446-5451.PubMedCrossRefGoogle Scholar
  60. Walters, M. and Sperandio, V. 2006. Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. Infect. Immun. 74:5445-5455.PubMedCrossRefGoogle Scholar
  61. Williams, P. H., Rabsch, W., Methner, U., Voigt, W., Tschape, H. and Reissbrodt, R. 2006. Catecholate receptor proteins in Salmonella enterica: role in virulence and implications for vaccine development. Vaccine 24:3840-3844.PubMedCrossRefGoogle Scholar
  62. Zaharik, M. L., Vallance, B. A., Puente, J. L., Gros, P. and Finlay, B. B. 2002. Host-pathogen interactions: host resistance factor Nramp1 up-regulates the expression of Salmonella pathogenicity island-2 virulence genes. Proc. Natl. Acad. Sci. U. S. A. 99:15705-15710.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Agroecosystems Management Research Unit USDA, ARS, National Laboratory for Agriculture and the EnvironmentAmesUSA
  2. 2.Medical Biofilm Research InstituteLubbockUSA

Personalised recommendations