Advertisement

Mechanisms of Stress-Mediated Modulation of Upper and Lower Respiratory Tract Infections

  • Cordula M. Stover
Chapter

Abstract

Stress is an external factor known to be a potent exacerbator of respiratory infections. Most explanations of how stress affects susceptibility to airway infections focus on the immune system. However, evidence is increasing that respiratory pathogens are equally responsive to the hormonal output of stress. This chapter considers the bacterial and mucosal determinants of respiratory tract infections and their interrelationship during stressful conditions.

Keywords

Stress Hormone Mucociliary Clearance Respiratory Pathogen Respiratory Epithelial Cell Common Variable Immune Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alverdy, J., Holbrook, C., Rocha, F., Seiden, L., Wu, R., Musch, M., Chang, E., Ohman, D., and Suh, S. 2000. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann. Surg. 232: 480–489.PubMedCrossRefGoogle Scholar
  2. Anderson, M., and Armstrong, S.K. 2006. The Bordetella Bfe system: growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholamines. J. Bacteriol. 188: 5731–5740.PubMedCrossRefGoogle Scholar
  3. Anderson, M., and Armstrong, S.K. 2008. Norepinephrine mediates acquisition of transferrin-iron in Bordetella bronchiseptica. J. Bacteriol. 190: 3940–3947.PubMedCrossRefGoogle Scholar
  4. Bals, R., and Hiemstra, P.S. 2004. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur. Respir. J. 23: 327–333.PubMedCrossRefGoogle Scholar
  5. Barnes, P. 2008. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest. 118: 3546–3556.PubMedCrossRefGoogle Scholar
  6. Black, P.H. 2002. Stress and inflammatory response: a review of neurogenic inflammation. Brain Behav. Immun. 16: 622–653.PubMedCrossRefGoogle Scholar
  7. Broug-Holub, E., Persoons, J., Schornagel, K., Mastbergen, S., and Kraal, G. 1998. Effects of stress on alveolar macrophages: a role for the sympathetic nervous system. Am. J. Respir. Cell. Mol. Biol. 19: 842–848.PubMedGoogle Scholar
  8. Burastero, S. 2006. Pollen-cross allergenicity mediated by panallergens: a clue to the pathogenesis of multiple sensitisations. Inflamm. Allergy Drug Targets 5: 203–209.PubMedCrossRefGoogle Scholar
  9. Chen, E., and Miller, G. 2007. Stress and inflammation in exacerbations of asthma. Brain Behav. Immun. 21: 993–999PubMedCrossRefGoogle Scholar
  10. Cohen, S., Doyle, W., Turner, R., Alper, C., and Skoner, D. 2003. Sociability and susceptibility to the common cold. Psychol. Sci. 14: 389–395.PubMedCrossRefGoogle Scholar
  11. Constant, S., Brogdon, J., Piggott, D., Herrick, C., Visintin, I., Ruddle, N., and Bottomly, K. 2002. Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ. J. Clin. Invest. 110: 1441–1448.PubMedGoogle Scholar
  12. Davril, M., Degroote, S., Humbert, P., Galabert, C., Dumur, V., Lafitte, J.J., Lamblin, G., and Roussel, P. 1999. The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. Glycobiology 9: 311–321.PubMedCrossRefGoogle Scholar
  13. Drummond, P., and Hewson-Bower, B. 1997. Increased psychosocial stress and decreased mucosal immunity in children with recurrent upper respiratory tract infections. J. Psychosom. Res. 43: 271–278.PubMedCrossRefGoogle Scholar
  14. Elenkov, I., Wilder, R., Chrousos, G., and Vizi, S. 2000. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52: 595–638.PubMedGoogle Scholar
  15. Flierl, M., Rittirsch, D., Nadeau, B., Chen, A., Sarma, J., Zetoune, F., McGuire, S., List, R., Day, D., Hoesel, L., Gao, H., Van Rooijen, N., Huber-Lang, M., Neubig, R., and Ward, P. 2007. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449: 721–725.PubMedCrossRefGoogle Scholar
  16. Freestone, P., Haigh, R., Williams, P., and Lyte, M. 1999. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol. Lett. 172: 53–60.PubMedCrossRefGoogle Scholar
  17. Freestone, P., Lyte, M., Neal, C., Maggs, A., Haigh, R., and Williams, P. 2000. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J. Bacteriol. 182: 6091–6098.PubMedCrossRefGoogle Scholar
  18. Freestone, P., Williams, P., Haigh, R., Maggs, A., Neal, C., and Lyte, M. 2002. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock 18: 465–470.PubMedCrossRefGoogle Scholar
  19. Freestone P., Sandrini S., Haigh, R., and Lyte, M. 2008a. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 16: 55–64.PubMedCrossRefGoogle Scholar
  20. Freestone, P., Haigh, R., and Lyte, M. 2008b. Catecholamine inotrope resuscitation of antibiotic-damaged staphylococci and its blockade by specific receptor antagonists. J Infect. Dis. 197: 1044–1052.PubMedCrossRefGoogle Scholar
  21. Fridkin, S. 1997. Magnitude and prevention of nosocomial infections in the intensive care unit. Infect. Dis. Clin. North Am. 11: 479–496.PubMedCrossRefGoogle Scholar
  22. Gonzales, X., Deshmukh, A., Pulse, M., Johnson, K., and Jones, H. 2008. Stress-induced differences in primary and secondary resistance against bacterial sepsis corresponds with diverse corticotropin releasing hormone receptor expression by pulmonary CD11C+ MHC+ and CD11C- MHC+ APCS. Brain Behav. Immun. 22: 552–564.PubMedCrossRefGoogle Scholar
  23. Grubor, B., Meyerholz, D.K., and Ackermann, M.R. 2006. Collectins and cationic antimicrobial peptides of the respiratory epithelia. Vet. Pathol. 43: 595–612.PubMedCrossRefGoogle Scholar
  24. Holt, P., Strickland, D., Wikström, M., and Jahnsen, F. 2008. Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol. 8: 142–152.PubMedCrossRefGoogle Scholar
  25. Ichimiya, I., Kawauchi, H., Fujiyoshi, T., Tanaka, T., and Mogi, G. 1991. Distribution of immunocompetent cells in normal nasal mucosa: comparisons among germ-free, specific pathogen-free, and conventional mice. Ann. Otol. Rhinol. Laryngol. 100: 638–642.PubMedGoogle Scholar
  26. James, D., and Nijkamp, F.P. 2000. Neuroendocrine and immune interactions with airway macrophages. Inflamm. Res. 49: 254–265.PubMedCrossRefGoogle Scholar
  27. Joachim, R.A., Cifuentes, L.B., Sagach, V., Quarcoo, D., Hagen, E., Arck, P.C., Fischer, A., Klapp, B.F., and Dinh, Q.T. 2006. Stress induces substance P in vagal sensory neurons innervating the mouse airways. Clin. Exp. Allergy 36: 1001–1010.PubMedCrossRefGoogle Scholar
  28. Joachim, R.A., Noga, O., Sagach, V., Hanf, G., Fliege, H., Kocalevent, R., Peters, E., and Klapp, B. 2007. Correlation between immune and neuronal parameters and stress perception in allergic asthmatics. Clin. Exp. Allergy 38: 283–290.PubMedCrossRefGoogle Scholar
  29. Joos, G. 2001. The role of neuroeffector mechanisms in the pathogenesis of asthma. Curr. Allergy Asthma Rep. 1: 134–143.PubMedCrossRefGoogle Scholar
  30. Kemeny, M., and Schedlowski, M. 2007. Understanding the interaction between psychosocial stress and immune-related diseases: a stepwise progression. Brain Behav. Immun. 21: 1009–1018.PubMedCrossRefGoogle Scholar
  31. Lyte, M., Freestone, P., Neal, C., Olson, B., Haigh, R., Bayston, R., and Williams, P. 2003. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361: 130–135.PubMedCrossRefGoogle Scholar
  32. Malarkey, W.B., and Mills, P.J. 2007. Endocrinology: the active partner in PNI research. Brain Behav. Immun. 21: 161–168.PubMedCrossRefGoogle Scholar
  33. Marsland, A., Cohen, S., Rabin, B., and Manuck, S. 2006. Trait positive affect and antibody response to hepatitis B vaccination. Brain Behav. Immun. 20: 261–269.PubMedCrossRefGoogle Scholar
  34. Merten, M.D., Tournier, J.M., Meckler, Y., and Figarella, C. 1993. Epinephrine promotes growth and differentiation of human tracheal gland cells in culture. Am J Respir Cell Mol Biol. 9: 172–178.PubMedGoogle Scholar
  35. Nadel, J.A., and Barnes, P.J. 1984. Autonomic regulation of the airways. Annu. Rev. Med. 35: 451–467.PubMedCrossRefGoogle Scholar
  36. Perez Vidakovics, M., Lamberti, Y., Serra, D., Berbers, G., van der Pol, W.-L., and Rodriguez, M. 2007. Iron stress increases Bordetella pertussis mucin-binding capacity and attachment to respiratory epithelial cells. FEMS Immunol. Med. Microbiol. 51: 414–421.CrossRefGoogle Scholar
  37. Randell, S., Boucher, R., and University of North Carolina Virtual Lung group. 2006. Effective mucus clearance is essential for respiratory health. Am. J. Respir. Cell. Mol. Biol. 35: 20–28.Google Scholar
  38. Reiche, E., Nunes, S., and Morimoto, H. 2004. Stress, depression, the immune system, and cancer. Lancet Oncol. 5: 617–625.PubMedCrossRefGoogle Scholar
  39. Schleimer, R.P., Kato, A., Kern, R., Kuperman, D., and Avila, P. 2007. Epithelium: at the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol. 120: 1279–1284.PubMedCrossRefGoogle Scholar
  40. Van der Vliet, A., Eiserich, J., and Cross C. 2000. Nitric oxide: a pro-inflammatory mediator in lung disease? Respir. Res. 1: 67–72.PubMedCrossRefGoogle Scholar
  41. Vlisidou, I., Lyte, M., van Diemen, P., Hawes, P., Monaghan, P., Wallis, T., and Stevens, M. 2004. The neuroendocrine stress hormone norepinephrine augments Escherichia coli O157:H7-induced enteritis and adherence in a bovine ligated ileal loop model of infection. Infect. Immun. 72: 5446–5451.PubMedCrossRefGoogle Scholar
  42. Wilson, R., Dowling, R., and Jackson, A. 1996. The biology of bacterial colonization and invasion of the respiratory mucosa. Eur. Respir. J. 9: 1523–1530.PubMedCrossRefGoogle Scholar
  43. Yamazakki, Y., Danelishvili, L., Wu, M., Hidaka, E., Katsuyama, T., Stang, B., Petrofsky, M., Bildfell, R., and Bermudez, L.E. 2006. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol. 8: 806–814.CrossRefGoogle Scholar
  44. Zuercher, A.W., Coffin, S.E., Thurnheer, M.C., Fundova, P., and Cebra, J.J. 2002. Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses. J. Immunol. 168: 1796–1803.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Department of Infection, Immunity and InflammationUniversity of LeicesterLeicesterUK

Personalised recommendations