Networking Resources for Research and Scientific Education in BW-eLabs

  • Sabina Jeschke
  • Eckart Hauck
  • Michael Krüger
  • Wolfgang Osten
  • Olivier Pfeiffer
  • Thomas Richter


The major aim of the BW-eLabs architecture (networked virtual and remote labs in Baden-Württemberg) is the expansion of access to heterogeneous experimental resources (remote as well as virtual or hybrid) for cooperative execution of experiments in natural sciences and engineering as well as the reuse of raw data and experiments for research and education purposes. Thus, three major tasks take center stage for the BW-eLabs portal: 1st, the creation of efficient possibilities of external access to local experimental surroundings, 2nd, the guarantee of transparency and reproducibility of experiments, and 3rd, the promotion of cooperation and collaboration within the scientific community in experiment-driven high-technology fields. Nanotechnology and robotics serve as demonstrator disciplines because especially in these cost intensive areas access to experimental equipment is an important prerequisite for ensuring access to professional tools for all scientific communities involved. Corresponding raw data and related documents are examined along their life cycle and embedded into the entire process chain of experimental environments through sustainable indexing and field specific ontologies, traceable and reusable by means of semantic search. Existing infrastructure, e.g. digital libraries, decentralized tools, and repositories, are embedded into the BW-eLabs. As a framework, the 3D platform Wonderland (Sun) comes into place, taking the complexity of professional experimental set-ups into account. The BW-eLabs portal, together with its partner projects LiLa and NetLabs, is designed as an open network for scientific data and experimental set-ups under OpenSource/Open Access/Open Content policy.


Virtual World Content Provider Autonomous Vehicle CdSe Nanocrystals Digital Holography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Jeschke, S. Cikic, Ludwig, N. Sinha, U. and C. Thomsen. Virtual and remote experiments in cooperative knowledge spaces, in grid enabled remote instrumentation, Part IV: Grid resource allocation, QoS, and security, F. Davoli, N. Meyer, R. Pugliese, and S. Zappatore., (eds), DOI 10.1007/978-0-387-09663-6_22, pp. 329–343, Springer, New York, NY, 2009Google Scholar
  2. 2.
    S. Jeschke, N. Natho, T. Richter. Integration technology for virtual laboratories – individualization and flexibility through computer algebra systems. Proceedings of the 2nd International Conference on Engineering Education & Training – Preparing engineers to meet the challenges of the future (ICEET – 2), April 9–11, Kuwait, 2007Google Scholar
  3. 3.
    S. Jeschke, T. Richter, H. Scheel, and C. Thomsen. On remote and virtual experiments in e-Learning in statistical mechanics and thermodynamics. Journal of Software (JSW), 6(2), 76–85, 2007Google Scholar
  4. 4.
    S. Jeschke, O. Pfeiffer, and C. Thomsen. Vernetzung experimenteller ressourcen in forschung und ausbildung für nanotechnologien und nanowissenschaft In: INFORMATIK 2006, Informatik für Menschen, Band 1, Beiträge der 36. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 2.–6. Oktober 2006 in Dresden, C. Hochberger and R. Liskowsky. (eds), pp 85–89, 2006, Gesellschaft für Informatik, Bonn, 2006Google Scholar
  5. 5.
    S. Jeschke, N. Natho, O. Pfeiffer, and C. Thomsen. Networking resources for research and scientific education in nanoscience and nanotechnologies, Proceedings of the 2008 International Conference on Nanoscience and Nanotechnology. Casual Productions, Melbourne, VIC, IEEE Press, New York, NY, pp. 234–237, 2008Google Scholar
  6. 6.
    eSciDoc Project webpage,, last access 31.3.2010 (2010)
  7. 7.
    M. Riede, R. Schueppel, K.O. Sylvester-Hvid, M. Kuhne, M.C. Rottger, K. Zimmermann, and A.W. Liehr. On the communication of scientific data: The full-metadata format, Computer Physics Communications, 181(3), March 2010, 651–662, ISSN 0010-4655, DOI: 10.1016/j.cpc.2009.11.014,
  8. 8.
    W. Stephan, B. Graf, A. Kirchgässner, S. Laschat, W. Schüz. Das Zeitschriften-Paradoxon oder: Wer verfügt über wissenschaftliche Information? Universitätsbibliothek Stuttgart, Bibliothek Bildung und Fortschritt 3, 2004Google Scholar
  9. 9.
    W. Osten, P. Ferraro. Digital holography for the inspection of microsystems. W. Osten., (ed), Optical inspection of microsystems, pp. 351–426, CRC Taylor & Francis, Boca Raton, FL, 2006CrossRefGoogle Scholar
  10. 10.
    B. Eßmann, P. Bleckmann, T. Hampel, and R. Elsässer. Distributed persistence in CSCW applications. tr-ri-05-268, December 2005Google Scholar
  11. 11.
    B. Eßmann, T. Hampel, F. Götz, and A. Elsner. Embedding collaborative visualizations into virtual knowledge spaces. Proccedings of the 7th International Conference on the Design of Cooperative Systems, pp. 33–40, Carry-le-Rouet, 2006Google Scholar
  12. 12.
    A. Haake. CURE Das CSCL-Portal der FernUniversität in Hagen – Benutzungshandbuch. Hagen, Germany: FernUniversität Gesamthochschule. , last access 31.3.2010), 2005
  13. 13.
    J.M. Haake, T. Schümmer, A. Haake, M. Bourimi, and B. Landgraf. Supporting flexible collaborative distance learning in the cure platform. Proceedings of the Hawaii International Conference on System Sciences (HICSS-37). Washington, DC, USA,., last access 31.3.2010, IEEE Press, 2004
  14. 14.
    F. Scholze, W. Stephan. Retrieval on the grid. Results from the European Project GRACE (Grid Search and Categorization Engine) Zugang zum Fachwissen – ODOK ’05, pp. 118–127, Feldkirch: Neugebauer , 2006Google Scholar
  15. 15.
    Wonderland (Sun) Project webpage,, last access 6.8.2009Google Scholar
  16. 16.
    G. Schneider. Identity management in der praxis, (together with D. v. Suchodoletz), In: Lecture notes in informatics vol P-73, Jan v. Knop et al. (eds), pp. 255–264, Springer, Berlin, 2005Google Scholar
  17. 17.
    G. Schneider. The black-forest-grid-initiative (together with R. Backofen, H.-G- Borrmann, W. Deck, A. Dedner, L. de Raedt, K. Desch, M. Diesmann, M. Geier, A. Greiner, W.R. Hess, J. Honerkamp, St. Jankowski, I. Krossing, A.W. Liehr, A. Karwath, R. Klöfkorn, R. Pesché, T. Potjans, M.C. Röttger, L. Schmidt-Thieme, B. Voß, B. Weibelt, P. Wienemann, V.-H- Winterer. PIK, 29, , 81–87, 2006Google Scholar
  18. 18.
    G. Schneider. Neue Medien als strategische Schrittmacher an der Universität Freiburg, in: Neue Medien als strategische Schrittmacher an der Universität Freiburg, Universitätsbibliothek Freiburg, 2007, pp. 13–24, ISBN 978-3-928969-20-8,, last access 31.3.2010, (2007)
  19. 19.
    F.-S. Riehle, R. Bienert, R. Thomann, G.A. Urban, M. Krüger. Blue luminescence and superstructures from magic size clusters of CdSe, Nano Letters, 9(2), 514–518,, last retrieved 31.03.2010, (2009)CrossRefGoogle Scholar
  20. 20.
    P.-J. Wu, K.-D. Tsuei, K.-H. Wei, K.S. Liang. Energy shift of photoemission spectra for organics-passivated CdSe nanoparticles: The final state effect, Solid State Communications 2007, 141(1), 6–11, 2007CrossRefGoogle Scholar
  21. 21.
    Y. Yuan, F.-S. Riehle, H. Gu, R. Thomann, G.A. Urban, M. Krüger. Journal of Nanoscience and Nanotechnolgy, accepted (2009)Google Scholar
  22. 22.
    M.L. del Puerto, M.L. Tiago, J.R. Chelikowsky. Ab initio methods for the optical properties of CdSe Clusters, Physical Review B, 2008, 77, 045404 ,2008CrossRefGoogle Scholar
  23. 23.
    D.J. Norris, A.L. Efros, S.C. Erwin. Doped nanocrystals, Science 2008, 319, 1776–1779, 2008Google Scholar
  24. 24.
    L. Yang, J. Chen, X. Zhong, K. Cui, Y. Xu, Y. Kuang. Au@Pt nanoparticles prepared by one-phase protocol and their electrocatalytic properties for methanol oxidation; Colloids and Surfaces A, 2007, 295, 21–26, 2007CrossRefGoogle Scholar
  25. 25.
    L. Demarconnay, C. Coutanceau, J.-M. Leger. Oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium, Electrochimica Acta, 2008, 53, 3232–3241, 2008CrossRefGoogle Scholar
  26. 26.
    R.H. Rich, J.S. Hauger, E.G. Derrick. The role of the national science foundation in supporting advanced network infrastructure: Views of the research community, report of the AAAS, October 1999, available online at:, last access 31.3.2010, (1999)
  27. 27.
    A. Friedrichs, P. Meisen, Henning, K. A generic software architecture for a driver information system to organize and operate truck platoons. In: Vortragsveröffentlichung, International Conference on Heavy Vehicles (HHVT2008), Paris, 19–22.05.2008, (2008)Google Scholar
  28. 28.
    P. Meisen, K. Henning, T. Seidl. A data-mining technique for the planning and organization of truck platoons. In: Proceedings of the International. Conference on Heavy Vehicles. Paris, 2008Google Scholar
  29. 29.
    K. Henning, E. Preuschoff., (eds), Einsatzszenarien für Fahrerassistenzsysteme im Strassengueterverkehr und deren Bewertung. VDI, Reihe 12, Nr. 531, Düsseldorf, 2003Google Scholar
  30. 30.
    Spirit of Berlin, FU Berlin, Team Raúl Rojas,, last access 31.03.2010

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sabina Jeschke
    • 1
  • Eckart Hauck
    • 1
  • Michael Krüger
    • 2
  • Wolfgang Osten
    • 3
  • Olivier Pfeiffer
    • 4
  • Thomas Richter
    • 3
  1. 1.RWTH Aachen UniversityAachenGermany
  2. 2.University of FreiburgFreiburgGermany
  3. 3.University of StuttgartStuttgartGermany
  4. 4.Technische Universität BerlinBerlinGermany

Personalised recommendations