• Ivan Djordjevic
  • William Ryan
  • Bane Vasic


We live in a time officially proclaimed as the information era, which is closely related to Internet technology and characterized by never-ending demands for higher information capacity [1]. Optical transmission links are established around the globe, and the optical fiber connection extends from the global backbone to access networks, all the way down to the curb, building, home, and desk [1–9]. Despite of the Internet “bubble” occurred in the early 2000s, the Internet traffic has been growing at astonishing rate ranging from 75 to 125% per year [6]. Given the recent growth of Internet usage, IPTV, and VoIP, it has become clear that current 10-Gb/s Ethernet rate is insufficient to satisfy the bandwidth demands in near future. For example, Internet2 has announced 2 years ago a capacity upgrade of its next-generation IP network from 10 Gb/s to 100 Gb/s [7]. According to some industry experts, 100-Gb/s transmission is needed by the end of 2009, while 1 Tb/s should be standardized by the year 2012–2013 [7].


Orthogonal Frequency Division Multiplex Wavelength Division Multiplex Stimulate Raman Scattering Forward Error Correction LDPC Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cvijetic M (2004) Optical transmission systems engineering. Artech House, Boston, MAGoogle Scholar
  2. 2.
    Ramaswami R, Sivarajan K (2002) Optical networks: a practical perspective, 2nd edn. Morgan Kaufman, San Fransisco, CAGoogle Scholar
  3. 3.
    Agrawal GP (2002) Fiber-optic communication systems, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Agrawal GP (2004) Lightwave technology: components and devices. Wiley, New YorkGoogle Scholar
  5. 5.
    Agrawal GP (2005) Lightwave technology: telecommunication systems. Wiley, New YorkGoogle Scholar
  6. 6.
    Melle S, Jaeger J, Perkins D, Vusirikala V (2007) Market drivers and implementation options for 100-GbE transport over the WAN. IEEE Appl Pract 45(11):18–24Google Scholar
  7. 7.
    Internet2 and Level 3 communications to deploy next generation nationwide research network Internet2 press release Available at
  8. 8.
    McDonough J (2007) Moving standards to 100 GbE and beyond. IEEE Commun Mag 45(11):6–9CrossRefGoogle Scholar
  9. 9.
    Shieh W, Djordjevic I (2009) OFDM for optical communications. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187(4736):493–494CrossRefGoogle Scholar
  11. 11.
    Kao KC, Hockman GA (1966) Dielectric-fiber surface waveguides for optical frequencies. Proc. IEEE 113:1151–1158Google Scholar
  12. 12.
    Essiambre E-J, Raybon G, Mikkelsen B (2002) Pseudo-linear transmission of high-speed TDM signals at 40 and 160 Gb/s. In: Kaminow IP, Li T (eds) Optical fiber telecommunications IVB. Academic, San Diego, CA, pp 233–304Google Scholar
  13. 13.
    Djordjevic IB, Minkov LL, Batshon HG (2008) Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization. IEEE J Sel Areas Commun, Optical Commun Netw 26(6):73–83CrossRefGoogle Scholar
  14. 14.
    Djordjevic IB, Cvijetic M, Xu L, Wang T (2007) Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission. IEEE/OSA J Lightwave Technol 25: 3619–3625CrossRefGoogle Scholar
  15. 15.
    Djordjevic IB, Arabaci M, Minkov L (2009) Next generation FEC for high-capacity communication in optical transport networks. IEEE/OSA J Lightwave Technol 27(16):3518–3530 (Invited Paper)CrossRefGoogle Scholar
  16. 16.
    Basch EB, Egorov R, Gringeri S, Elby S (2006) Architectural tradeoffs for reconfigurable dense wavelength division multiplexing systems. IEEE J Sel Top Quantum Electron 12:615–626CrossRefGoogle Scholar
  17. 17.
    Burns P (2003) Software defined radio for 3G. Artech House, Boston, MAGoogle Scholar
  18. 18.
    Kenningotn PB (2005) RF and baseband techniques for software defined radio. Artech House, Boston, MAGoogle Scholar
  19. 19.
    Mitola J (1995) The software radio architecture. IEEE Commun Mag 33(5):26–38CrossRefGoogle Scholar
  20. 20.
    Winzer PJ, Raybon G, Duelk M (2005) 107-Gb/s optical ETDM transmitter for 100 G Ethernet transport In: Proceedings of European conference on optical communication, Paper no. Th4.1.1, Glasgow, ScotlandGoogle Scholar
  21. 21.
    Sun H, Wu KT, Roberts K (2008) Real-time measurements of a 40 Gb/s coherent system. Opt Express 16:873–879CrossRefGoogle Scholar
  22. 22.
    Djordjevic IB, Vasic B (2006) 100 Gb/s transmission using orthogonal frequency division multiplexing. IEEE Photon Technol Lett 18(15):1576–1578CrossRefGoogle Scholar
  23. 23.
    Djordjevic IB, Cvijetic M, Xu L, Wang T (2007) Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation. IEEE Photon Technol Lett 19(12):874–876CrossRefGoogle Scholar
  24. 24.
    Batshon HG, Djordjevic IB, Minkov LL, Xu L, Wang T, Cvijetic M (2008) Proposal to achieve 1 Tb/s per wavelength transmission using 3-dimensional LDPC-coded modulation. IEEE Photon. Technol Lett 20(9):721–723CrossRefGoogle Scholar
  25. 25.
    Batshon HG, Djordjevic IB, Xu L, Wang T (2009) Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission. IEEE Photon Technol Lett 21(16): 1139–1141CrossRefGoogle Scholar
  26. 26.
    Fludger CRS, Duthel T, Van Den Borne D et al (2008) Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission. IEEE/OSA J Lightwave Technol 26:64–72CrossRefGoogle Scholar
  27. 27.
    Djordjevic IB (2009) Adaptive LDPC-coded multilevel modulation with coherent detection for high-speed optical transmission In: Proceedings of IEEE photonics society summer topicals 20–22 July 2009, Newport Beach, CA, Paper no. WC1. 2Google Scholar
  28. 28.
    Buchali F, Bülow H (2004) Adaptive PMD compensation by electrical and optical techniques. IEEE/OSA J Lightwave Technol 22:1116–1126CrossRefGoogle Scholar
  29. 29.
    Elbers JP, Wernz H, Griesser H et al (2005) Measurement of the dispersion tolerance of optical duobinary with an MLSE-receiver at 10.7 Gb/s In: Proceedings of optical fiber communication conference, Los Angeles, CA, Paper no. OThJ4Google Scholar
  30. 30.
    McGhan D, Laperle C, Savchenko A, Li C, Mark G, O’Sullivan M (2006) 5120-km RZ-DPSK transmission over G.652 fiber at 10 Gb/s without optical dispersion compensation. IEEE Photon Technol Lett 18:400–402CrossRefGoogle Scholar
  31. 31.
    Djordjevic IB, Vasic B (2006) Orthogonal frequency division multiplexing for high-speed optical transmission. Opt Express 14:3767–3775CrossRefGoogle Scholar
  32. 32.
    Lowery AJ, Du L, Armstrong J (2006) Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems In: Proceedings of optical fiber communication conference, Anaheim, CA, Paper no. PDP 39Google Scholar
  33. 33.
    Shieh W, Athaudage C (2006) Coherent optical orthogonal frequency division multiplexing. Electron Lett 42:587–589CrossRefGoogle Scholar
  34. 34.
    Shieh W, Yang Q, Ma Y (2008) 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing. Opt Express 16:6378–6386CrossRefGoogle Scholar
  35. 35.
    Jansen SL, Morita I, Tanaka H (2008) 10x121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF In: Proceedings of optical fiber communication conference, San Diego, CA, Paper no. PDP2Google Scholar
  36. 36.
    Kobayash T, Sano A, Yamada E (2008) Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation. Electron Lett 44:225–226CrossRefGoogle Scholar
  37. 37.
    ITU, Telecommunication Standardization Sector. Forward error correction for submarine systems. Technical recommendation G.975/G709Google Scholar
  38. 38.
    Sab OA (2001) FEC techniques in submarine transmission systems. In: Proceedings of optical fiber communication conference, vol 2, pp TuF1-1–TuF1-3Google Scholar
  39. 39.
    Pyndiah RM (1998) Near optimum decoding of product codes. IEEE Trans Commun 46: 1003–1010MATHCrossRefGoogle Scholar
  40. 40.
    Sab OA, Lemarie V (2001) Block turbo code performances for long-haul DWDM optical transmission systems. OFC 3:280–282Google Scholar
  41. 41.
    Mizuochi T et al (2004) Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems. IEEE J Sel Top Quantum Electron 10(2):376–386CrossRefGoogle Scholar
  42. 42.
    Gallager RG (1963) Low density parity check codes. MIT, Cambridge, MAGoogle Scholar
  43. 43.
    Mizuochi T et al (2003) Next generation FEC for optical transmission systems. In: Proceedings of optical fiber communication conference (OFC 2003), vol 2, pp 527–528Google Scholar
  44. 44.
    Djordjevic IB, Milenkovic O, Vasic B (2005) Generalized low-density parity-check codes for optical communication systems. IEEE/OSA J. Lightwave Technol 23:1939–1946CrossRefGoogle Scholar
  45. 45.
    Vasic B, Djordjevic IB, Kostuk R (2003) Low-density parity check codes and iterative decoding for long haul optical communication systems. IEEE/OSA J Lightwave Technol 21:438–446CrossRefGoogle Scholar
  46. 46.
    Djordjevic IB et al (2004) Projective plane iteratively decodable block codes for WDM high-speed long-haul transmission systems. IEEE/OSA J Lightwave Technol 22:695–702CrossRefGoogle Scholar
  47. 47.
    Milenkovic O, Djordjevic IB, Vasic B (2004) Block-circulant low-density parity-check codes for optical communication systems IEEE/LEOS J Sel Top Quantum Electron 10:294–299Google Scholar
  48. 48.
    Vasic B, Djordjevic IB (2002) Low-density parity check codes for long haul optical communications systems. IEEE Photon Technol Lett 14:1208–1210CrossRefGoogle Scholar
  49. 49.
    Chung S et al (2001) On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun Lett 5:58–60CrossRefGoogle Scholar
  50. 50.
    Davey MC, MacKay DJC (1998) Low-density parity check codes over GF(q). IEEE Commun Lett 2:165–167CrossRefGoogle Scholar
  51. 51.
    Mizuochi T (2006) Recent progress in forward error correction and its interplay with transmission impairments. IEEE Sel Top Quantum Electron 12(4):544–554CrossRefGoogle Scholar
  52. 52.
    Mizuochi T, Konishi Y, Miyata Y, Inoue T, Onohara K, Kametani S, Sugihara T, Kubo K, Yoshida H, Kobayashi T, Ichikawa T (2009) Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation. IEEE Photon Technol Lett 21(18):1302–1304CrossRefGoogle Scholar
  53. 53.
    Djordjevic IB, Vasic B (2006) Multilevel coding in M-ary DPSK/differential QAM high-speed optical transmission with direct detection. IEEE/OSA J Lightwave Technol 24:420–428CrossRefGoogle Scholar
  54. 54.
    Bahl LR, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inform Theory IT-20(2):284–287MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    ten Brink S (2001) Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans Commun 40:1727–1737CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringUniversity of ArizonaTucsonUSA

Personalised recommendations