Measuring Stroke Volume Using Electrical Impedance Tomography

  • H. Luepschen
  • S. Leonhardt
  • C. Putensen


Electrical impedance tomography (EIT) of the lungs is a bedside-available, noninvasive, and radiation-free medical imaging modality which allows real-time imaging of electrical impedance (i.e., resistance to alternating currents) changes in the thorax [1]. During breathing, lung tissue, with its relatively high impedance oscillations, is the main contributor to these changes which has led to a multitude of applications in monitoring regional lung ventilation [2, 3, 4, 5, for review see 6, 7].


Stroke Volume Electrical Impedance Tomography Heart Region Electrical Impedance Tomography Image Cardiac Stroke Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barber DC, Brown BH, Freeston IL (1983) Imaging spatial distributions of resistivity using applied potential tomography. Electron Lett 19: 93–95CrossRefGoogle Scholar
  2. 2.
    Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G (1999) Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann N Y Acad Sci 873: 493–505CrossRefPubMedGoogle Scholar
  3. 3.
    Victorino JA, Borges JB, Okamoto VN, et al (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169: 791–800CrossRefPubMedGoogle Scholar
  4. 4.
    Meier T, Luepschen H, Karsten J, et al (2008) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 34: 543–550CrossRefPubMedGoogle Scholar
  5. 5.
    Costa ELV, Chaves CN, Gomes S, et al (2008) Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med 36: 1230–1238CrossRefPubMedGoogle Scholar
  6. 6.
    Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21: R1–R21CrossRefPubMedGoogle Scholar
  7. 7.
    Costa ELV, Lima RG, Amato MBP (2009) Electrical impedance tomography. Curr Opin Crit Care 15: 18–24CrossRefPubMedGoogle Scholar
  8. 8.
    Eyiiboglu BM, Brown BH, Barber DC, Seagar AD (1987) Localisation of cardiac related impedance changes in the thorax. Clin Phys Physiol Meas 8A: 167–173CrossRefGoogle Scholar
  9. 9.
    Wrigge H, Zinserling J, Muders T, et al (2008) Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 36: 903–909Google Scholar
  10. 10.
    Beraldo MA, Reske A, Borges JB, et al (2006) PEEP titration by EIT (electrical impedance tomography): correlation with multislice CT. Am J Respir Crit Care Med 173: A64 (abst)CrossRefGoogle Scholar
  11. 11.
    Luepschen H, Meier T, Grossherr M, et al (2007) Protective ventilation using electrical impedance tomography. Physiol Meas 28: S247–260CrossRefGoogle Scholar
  12. 12.
    Suarez-Sipman F, Bohm SH, Tusman G, et al (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 35: 214–221CrossRefGoogle Scholar
  13. 13.
    Chiumello D, Carlesso E, Cadringher P, et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178: 346–55CrossRefPubMedGoogle Scholar
  14. 14.
    Bayford RH (2006) Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng 8: 63–91CrossRefPubMedGoogle Scholar
  15. 15.
    Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng 34: 843–852CrossRefPubMedGoogle Scholar
  16. 16.
    Lionheart W, Polydorides N, Borsic A (2009) The reconstruction problem. In: Holder D (ed) Electrical Impedance Tomography —Methods, History and Applications. Institute of Physics Publishing, Bristol, pp 3–64Google Scholar
  17. 17.
    Adler A, Dai T, Lionheart W (2007) Temporal image reconstruction in electrical impedance tomography. Physiol Meas 28: S1–S11CrossRefPubMedGoogle Scholar
  18. 18.
    Hochmann D, Sadok M (2004) Theory of synchronous averaging. IEEE Aerospace Conference 6: 3636–3653Google Scholar
  19. 19.
    Eyüboglu BM, Brown BH, Barber DC (1989) In vivo imaging of cardiac related impedance changes. IEEE Engineering in medicine and biology magazine 8: 39–45CrossRefPubMedGoogle Scholar
  20. 20.
    Lyons, RG (2004) Understanding Digital Signal Processing, 2nd edition, Chapter II, Prentice Hall PTR, New JerseyGoogle Scholar
  21. 21.
    Leathard AD, Brown, BH, Campbell J, et al (1994) A comparison of ventilator and cardiac related changes in EIT images of normal human lungs and of lungs with pulmonary emboli. Physiol Meas 15: A137–A146CrossRefPubMedGoogle Scholar
  22. 22.
    Krivoshei A, Kukk V, Min M (2008) Decomposition method of an electrical bio-impedance signal into cardiac and respiratory components. Physiol Meas 29: S15–S26CrossRefPubMedGoogle Scholar
  23. 23.
    Deibele JM, Luepschen H, Leonhardt S (2008) Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography. Physiol Meas 29: S1–S14CrossRefPubMedGoogle Scholar
  24. 24.
    Patterson RP (1985) Sources of the thoracic cardiogenic electrical impedance signal as determined by a model. Med Biol Eng Comp 23: 411–417CrossRefGoogle Scholar
  25. 25.
    Brown BH, Leathard A, Sinton A, et al (1992) Blood flow imaging using electrical impedance tomography. Clin Phys Physiol Meas 13: A175–A179CrossRefGoogle Scholar
  26. 26.
    Dawson P, Cosgrove DO, Grainger RG (1999) Textbook of Contrast Media. ISIS Medical Media, Oxford, p. 612Google Scholar
  27. 27.
    Hahn G, Dittmar J, Just A, Hellige G (2008) Improvements in the image quality of ventilatory tomograms by electrical impedance tomography. Physiol Meas 29: S51–S61CrossRefPubMedGoogle Scholar
  28. 28.
    Vonk-Noordegraaf A, Janse A, Marcus JT et al (2000) Determination of stroke volume by means of electrical impedance tomography. Physiol Meas 21: 285–293CrossRefPubMedGoogle Scholar
  29. 29.
    Vonk Noordegraaf A, Faes TJ, Marcus JT, et al (1996) Improvement of cardiac imaging in electrical impedance tomography by means of a new electrode configuration. Physiol Meas 17: 179–188CrossRefPubMedGoogle Scholar
  30. 30.
    Zlochiver S, Freimark D, Arad M, et al (2006) Parametric EIT for monitoring cardiac stroke volume. Phys Meas 27: S139–S146CrossRefGoogle Scholar
  31. 31.
    Frerichs I, Hinz J, Hermann P, et al (2002) Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imaging 21: 646–652CrossRefPubMedGoogle Scholar
  32. 32.
    Luepschen H, Meier T, Leibecke T, et al (2006) Enhancement of protective ventilation strategies using electrical impedance tomography. IFMBE Proceedings of the World Congress on Medical Physics and Biomedical Engineering 14, WC2006 (abst)Google Scholar
  33. 33.
    Bein B, Meybohm P, Cavus E, et al (2007) The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg 105: 107–113CrossRefPubMedGoogle Scholar
  34. 34.
    Smit HJ, Vonk-Noordegraaf A, Marcus JT, et al (2004) Determinants of pulmonary perfusion measured by electrical impedance tomography. Eur J Appl Physiol 92: 45–49CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • H. Luepschen
    • 1
  • S. Leonhardt
    • 2
  • C. Putensen
    • 1
  1. 1.Department of Anesthesiology and Operative Intensive Care MedicineUniversity of BonnBonnGermany
  2. 2.Medical Information Technology Helmholtz-InsituteRWTH UniversityAachenGermany

Personalised recommendations