Drug Distribution: Is it a more Important Determinant of Drug Dosing than Clearance?

  • M. Ulldemolins
  • J. A. Roberts
  • J. Rello
Conference paper


Appropriate drug dosing in critically ill patients remains an unresolved challenge for clinicians. Severity of disease and aggressive medical management of patients admitted to the intensive care unit (ICU) are known to drive to changes in patient physiology that lead to important variations in pharmacokinetics [1]. However, despite an increasing awareness of differential dosing requirements for critically ill patients, dose-finding studies continue to be performed in healthy volunteers or non-critically ill patients.


Continuous Renal Replacement Therapy Antimicrob Agent Drug Distribution Lipophilic Drug Sodium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37: 840–851CrossRefPubMedGoogle Scholar
  2. 2.
    Pea F, Viale P, Furlanut M (2005) Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet 44: 1009–1034CrossRefPubMedGoogle Scholar
  3. 3.
    Power BM, Forbes AM, van Heerden PV, Ilett KF (1998) Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet 34: 25–56CrossRefPubMedGoogle Scholar
  4. 4.
    Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J (2009) Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med 37: 2268–2282CrossRefPubMedGoogle Scholar
  5. 5.
    Fuster-Lluch O, Geronimo-Pardo M, Peyro-Garcia R, Lizan-Garcia M (2008) Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care 36: 674–680PubMedGoogle Scholar
  6. 6.
    Rowland M, Tozer TN (1995) Clinical Pharmacokinetics. Concepts and Applications, Third Edition. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  7. 7.
    Liu P, Derendorf H (2003) Antimicrobial tissue concentrations. Infect Dis Clin North Am 17: 599–613CrossRefPubMedGoogle Scholar
  8. 8.
    Elmadfa I, Freisling H (2009) Nutritional status in Europe: methods and results. Nutr Rev 67 (Suppl 1): S130–134CrossRefGoogle Scholar
  9. 9.
    Catenacci VA, Hill JO, Wyatt HR (2009) The obesity epidemic. Clin Chest Med 30: 415–444CrossRefPubMedGoogle Scholar
  10. 10.
    Sakr Y, Madl C, Filipescu D, et al (2008) Obesity is associated with increased morbidity but not mortality in critically ill patients. Intensive Care Med 34: 1999–2009CrossRefPubMedGoogle Scholar
  11. 11.
    Greenblatt DJ, Abernethy DR, Locniskar A, Harmatz JS, Limjuco RA, Shader RI (1984) Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61: 27–35PubMedGoogle Scholar
  12. 12.
    Schwartz AE, Matteo RS, Ornstein E, Young WL, Myers KJ (1991) Pharmacokinetics of sufentanil in obese patients. Anesth Analg 73: 790–793PubMedGoogle Scholar
  13. 13.
    Sketris I, Lesar T, Zaske DE, Cipolle RJ (1981) Effect of obesity on gentamicin pharmacokinetics. J Clin Pharmacol 21: 288–293PubMedGoogle Scholar
  14. 14.
    Bauer LA, Edwards WA, Dellinger EP, Simonowitz DA (1983) Influence of weight on aminoglycoside pharmacokinetics in normal weight and morbidly obese patients. Eur J Clin Pharmacol 24: 643–647CrossRefPubMedGoogle Scholar
  15. 15.
    Blouin RA, Bauer LA, Miller DD, Record KE, Griffen WO Jr (1982) Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother 21: 575–580PubMedGoogle Scholar
  16. 16.
    Vance-Bryan K, Guay DR, Gilliland SS, Rodvold KA, Rotschafer JC (1993) Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother 37: 436–440PubMedGoogle Scholar
  17. 17.
    Schrier RW (2006) Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am J Med 119: S47–53CrossRefGoogle Scholar
  18. 18.
    Shemin D, Dworkin LD (1997) Sodium balance in renal failure. Curr Opin Nephrol Hypertens 6: 128–132CrossRefPubMedGoogle Scholar
  19. 19.
    el Touny M, el Guinaidy M, Abdel Barry M, Osman L, Sabbour MS (1992) Pharmacokinetics of aztreonam in patients with liver cirrhosis and ascites. J Antimicrob Chemother 30: 387–395CrossRefPubMedGoogle Scholar
  20. 20.
    Swabb EA, Leitz MA, Pilkiewicz FG, Sugerman AA (1981) Pharmacokinetics of the monobactam SQ 26,776 after single intravenous doses in healthy subjects. J Antimicrob Chemother 8 (Suppl E): 131–140PubMedGoogle Scholar
  21. 21.
    Lewis GP, Jusko WJ (1975) Pharmacokinetics of ampicillin in cirrhosis. Clin Pharmacol Ther 18: 475–484PubMedGoogle Scholar
  22. 22.
    Aldaz A, Ortega A, Idoate A, Giraldez J, Brugarolas A (2000) Effects of hepatic function on vancomycin pharmacokinetics in patients with cancer. Ther Drug Monit 22: 250–257CrossRefPubMedGoogle Scholar
  23. 23.
    Gill MA, Kern JW (1979) Altered gentamicin distribution in ascitic patients. Am J Hosp Pharm 36: 1704–1706PubMedGoogle Scholar
  24. 24.
    Pavek P, Ceckova M, Staud F (2009) Variation of drug kinetics in pregnancy. Curr Drug Metab 10: 520–529CrossRefPubMedGoogle Scholar
  25. 25.
    Kirsch R, Frith L, Black E, Hoffenberg R (1968) Regulation of albumin synthesis and catabolism by alteration of dietary protein. Nature 217: 578–579CrossRefPubMedGoogle Scholar
  26. 26.
    Cooper JK, Gardner C (1989) Effect of aging on serum albumin. J Am Geriatr Soc 37: 1039–1042PubMedGoogle Scholar
  27. 27.
    Mariani G, Strober W, Keiser H, Waldmann TA (1976) Pathophysiology of hypoalbuminemia associated with carcinoid tumor. Cancer 38: 854–860CrossRefPubMedGoogle Scholar
  28. 28.
    Rothschild MA, Oratz M, Zimmon D, Schreiber SS, Weiner I, Van Caneghem A (1969) Albumin synthesis in cirrhotic subjects with ascites studied with carbonate-14C. J Clin Invest 48: 344–350PubMedGoogle Scholar
  29. 29.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150CrossRefPubMedGoogle Scholar
  30. 30.
    van der Poll T, Opal SM (2008) Host-pathogen interactions in sepsis. Lancet Infect Dis 8: 32–43CrossRefPubMedGoogle Scholar
  31. 31.
    Plank LD, Hill GL (2000) Similarity of changes in body composition in intensive care patients following severe sepsis or major blunt injury. Ann N Y Acad Sci 904: 592–602CrossRefPubMedGoogle Scholar
  32. 32.
    Marik PE (1993) Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 21: 172–173PubMedGoogle Scholar
  33. 33.
    Kitzes-Cohen R, Farin D, Piva G, De Myttenaere-Bursztein SA (2002) Pharmacokinetics and pharmacodynamics of meropenem in critically ill patients. Int J Antimicrob Agents 19: 105–110CrossRefPubMedGoogle Scholar
  34. 34.
    Joynt GM, Lipman J, Gomersall CD, Young RJ, Wong EL, Gin T (2001) The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 47: 421–429CrossRefPubMedGoogle Scholar
  35. 35.
    Burkhardt O, Kumar V, Katterwe D, et al (2007) Ertapenem in critically ill patients with earlyonset ventilator-associated pneumonia: pharmacokinetics with special consideration of freedrug concentration. J Antimicrob Chemother 59: 277–284CrossRefPubMedGoogle Scholar
  36. 36.
    del Mar Fernandez de Gatta Garcia M, Revilla N, Calvo MV, Dominguez-Gil A, Sanchez Navarro A (2007) Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 33: 279–285CrossRefPubMedGoogle Scholar
  37. 37.
    Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C (2006) Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother 50: 2455–2463CrossRefPubMedGoogle Scholar
  38. 38.
    Bonate PL (1990) Pathophysiology and pharmacokinetics following burn injury. Clin Pharmacokinet 18: 118–130CrossRefPubMedGoogle Scholar
  39. 39.
    Kaneda K, Han TH (2009) Comparative population pharmacokinetics of fentanyl using nonlinear mixed effect modeling: burns vs. non-burns. Burns 35: 790–797CrossRefPubMedGoogle Scholar
  40. 40.
    Finfer S, Bellomo R, McEvoy S, et al (2006) Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the saline versus albumin fluid evaluation (SAFE) study. BMJ 333: 1044–1049CrossRefPubMedGoogle Scholar
  41. 41.
    Rybak MJ, Bailey EM, Lamp KC, Kaatz GW (1992) Pharmacokinetics and bactericidal rates of daptomycin and vancomycin in intravenous drug abusers being treated for gram-positive endocarditis and bacteremia. Antimicrob Agents Chemother 36: 1109–1114PubMedGoogle Scholar
  42. 42.
    Roberts MS, Rumble RH, Wanwimolruk S, Thomas D, Brooks PM (1983) Pharmacokinetics of aspirin and salicylate in elderly subjects and in patients with alcoholic liver disease. Eur J Clin Pharmacol 25: 253–261CrossRefPubMedGoogle Scholar
  43. 43.
    Davis BD (1943) The binding of sulfonamide drugs by plasma proteins. a factor in determining the distribution of drugs in the body. J Clin Invest 22: 753–762CrossRefPubMedGoogle Scholar
  44. 44.
    Chumlea WC, Guo SS (1994) Bioelectrical impedance and body composition: Present status and future directions. Nutr Rev 52: 123–131CrossRefPubMedGoogle Scholar
  45. 45.
    Miller ME, Cosgriff JM, Forbes GB (1989) Bromide space determination using anionexchange chromatography for measurement of bromide. Am J Clin Nutr 50: 168–171PubMedGoogle Scholar
  46. 46.
    Jacob M, Conzen P, Finsterer U, Krafft A, Becker BF, Rehm M (2007) Technical and physiological background of plasma volume measurement with indocyanine green: a clarification of misunderstandings. J Appl Physiol 102: 1235–1242CrossRefPubMedGoogle Scholar
  47. 47.
    Kumar A, Roberts D, Wood KE, et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34: 1589–1596CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • M. Ulldemolins
    • 1
  • J. A. Roberts
    • 2
  • J. Rello
    • 1
  1. 1.Critical Care DepartmentJoan XXIII University HospitalTarragonaSpain
  2. 2.Burns, Trauma and Critical Care Research Centre, The University of QueenslandRoyal Brisbane and Women's HospitalHerstonAustralia

Personalised recommendations