Advertisement

Augmented Renal Clearance: Unraveling the Mystery of Elevated Antibiotic Clearance

  • A. A. Udy
  • J. A. Roberts
  • J. Lipman
Conference paper

Abstract

The prescription of pharmaceuticals in the critically ill represents a significant challenge, largely due to the scarcity of knowledge concerning the pharmacokinetic implications of the underlying disease state [1]. Dynamic changes in organ function can be remarkable in this population, driven by both the primary pathophysiological disturbance, and as a consequence of therapy provided. Vascular tone, capillary permeability, fluid status, cardiac output, and major organ blood flow can be significantly altered, with substantial follow-on effects on the volume of distribution and clearance of many agents.

Keywords

Creatinine Clearance Febrile Neutropenia Systemic Inflammatory Response Syndrome Intensive Care Unit Patient Therapeutic Drug Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37: 840–851CrossRefPubMedGoogle Scholar
  2. 2.
    Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126: 534–539CrossRefPubMedGoogle Scholar
  3. 3.
    Benmalek F, Behforouz N, Benoist JF, et al (1999) Renal effects of low-dose dopamine during vasopressor therapy for posttraumatic intracranial hypertension. Intensive Care Med 25: 399–405CrossRefPubMedGoogle Scholar
  4. 4.
    Brown R, Babcock R, Talbert J, Gruenberg J, Czurak C, Campbell M (1980) Renal function in critically ill postoperative patients: Sequential assessment of creatinine osmolar and free water clearance. Crit Care Med 8: 68–72CrossRefPubMedGoogle Scholar
  5. 5.
    Conil JM, Georges B, Fourcade O, et al (2007) Assessment of renal function in clinical practice at the bedside of burn patients. Br J Clin Pharmacol 63: 583–594CrossRefPubMedGoogle Scholar
  6. 6.
    Conil JM, Georges B, Mimoz O, et al (2006) Influence of renal function on trough serum concentrations of piperacillin in intensive care unit patients. Intensive Care Med 32: 2063–2066CrossRefPubMedGoogle Scholar
  7. 7.
    Fuster-Lluch O, Geronimo-Pardo M, Peyro-Garcia R, Lizan-Garcia M (2008) Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care 36: 674–680PubMedGoogle Scholar
  8. 8.
    Lipman J, Wallis SC, Boots RJ (2003) Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg 97: 1149–1154CrossRefPubMedGoogle Scholar
  9. 9.
    Udy A, Roberts JA, Boots RJ, Lipman J (2009) You only find what you look for: the importance of high creatinine clearance in the critically ill. Anaesth Intensive Care 37: 11–13PubMedGoogle Scholar
  10. 10.
    Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med 354: 2473–2483CrossRefPubMedGoogle Scholar
  11. 11.
    Sunder-Plassmann G, Hod WH (2004) A critical appraisal for definition of hyperfiltration. Am J Kidney Dis 43: 396CrossRefPubMedGoogle Scholar
  12. 12.
    Kitzes-Cohen R, Farin D, Piva G, De Myttenaere-Bursztein SA (2002) Pharmacokinetics and pharmacodynamics of meropenem in critically ill patients. Int J Antimicrob Agents 19: 105–110CrossRefPubMedGoogle Scholar
  13. 13.
    Burkhardt O, Kumar V, Katterwe D, et al (2007) Ertapenem in critically ill patients with earlyonset ventilator-associated pneumonia: pharmacokinetics with special consideration of freedrug concentration. J Antimicrob Chemother 59: 277–284CrossRefPubMedGoogle Scholar
  14. 14.
    del Mar Fernandez de Gatta Garcia M, Revilla N, Calvo MV, Dominguez-Gil A, Sanchez Navarro A (2007) Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 33: 279–285CrossRefGoogle Scholar
  15. 15.
    Hoste EA, Damen J, Vanholder RC, et al (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 20: 747–753CrossRefPubMedGoogle Scholar
  16. 16.
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130: 461–470PubMedGoogle Scholar
  17. 17.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41CrossRefPubMedGoogle Scholar
  18. 18.
    Herrera-Gutierrez ME, Seller-Perez G, Banderas-Bravo E, Munoz-Bono J, Lebron-Gallardo M, Fernandez-Ortega JF (2007) Replacement of 24-h creatinine clearance by 2-h creatinine clearance in intensive care unit patients: a single-center study. Intensive Care Med 33: 1900–1906CrossRefPubMedGoogle Scholar
  19. 19.
    Poggio ED, Nef PC, Wang X, et al (2005) Performance of the Cockcroft-Gault and modification of diet in renal disease equations in estimating GFR in ill hospitalized patients. Am J Kidney Dis 46: 242–252CrossRefPubMedGoogle Scholar
  20. 20.
    Bone RC, Balk RA, Cerra FB, et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101: 1644–1655Google Scholar
  21. 21.
    Di Giantomasso D, May CN, Bellomo R (2003) Vital organ blood flow during hyperdynamic sepsis. Chest 124: 1053–1059CrossRefPubMedGoogle Scholar
  22. 22.
    Wan L, Bellomo R, May CN (2007) The effects of normal and hypertonic saline on regional blood flow and oxygen delivery. Anesth Analg 105: 141–147CrossRefPubMedGoogle Scholar
  23. 23.
    Di Giantomasso D, May CN, Bellomo R (2002) Norepinephrine and vital organ blood flow. Intensive Care Med 28: 1804–1809CrossRefPubMedGoogle Scholar
  24. 24.
    Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledonne M, Glabman S (1983) Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med 75: 943–950CrossRefPubMedGoogle Scholar
  25. 25.
    Hanes SD, Wood GC, Herring V, et al (2000) Intermittent and continuous ceftazidime infusion for critically ill trauma patients. Am J Surg 179: 436–440CrossRefPubMedGoogle Scholar
  26. 26.
    Shikuma LR, Ackerman BH, Weaver RH, et al (1990) Effects of treatment and the metabolic response to injury on drug clearance: a prospective study with piperacillin. Crit Care Med 18: 37–41CrossRefPubMedGoogle Scholar
  27. 27.
    Jacolot A, Incagnoli P, Edouard AR, et al (1999) Pharmacokinetics of cefpirome during the posttraumatic systemic inflammatory response syndrome. Intensive Care Med 25: 486–491CrossRefPubMedGoogle Scholar
  28. 28.
    Brater DC, Bawdon RE, Anderson SA, Purdue GF, Hunt JL (1986) Vancomycin elimination in patients with burn injury. Clin Pharmacol Ther 39: 631–634CrossRefPubMedGoogle Scholar
  29. 29.
    Conil JM, Georges B, Breden A, et al (2006) Increased amikacin dosage requirements in burn patients receiving a once-daily regimen. Int J Antimicrob Agents 28: 226–230CrossRefPubMedGoogle Scholar
  30. 30.
    Conil JM, Georges B, Lavit M, et al (2007) Pharmacokinetics of ceftazidime and cefepime in burn patients: the importance of age and creatinine clearance. Int J Clin Pharmacol Ther 45: 529–538PubMedGoogle Scholar
  31. 31.
    Pea F, Viale P, Candoni A, et al (2004) Teicoplanin in patients with acute leukaemia and febrile neutropenia: a special population benefiting from higher dosages. Clin Pharmacokinet 43: 405–415CrossRefPubMedGoogle Scholar
  32. 32.
    Fernandez de Gatta MM, Fruns I, Hernandez JM, et al (1993) Vancomycin pharmacokinetics and dosage requirements in hematologic malignancies. Clin Pharm 12: 515–520PubMedGoogle Scholar
  33. 33.
    Romano S, Fernandez de Gatta MM, Calvo MV, Caballero D, Dominguez-Gil A, Lanao JM (1999) Population pharmacokinetics of amikacin in patients with haematological malignancies. J Antimicrob Chemother 44: 235–242CrossRefPubMedGoogle Scholar
  34. 34.
    Joynt GM, Lipman J, Gomersall CD, Young RJ, Wong EL, Gin T (2001) The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 47: 421–429CrossRefPubMedGoogle Scholar
  35. 35.
    Barbot A, Venisse N, Rayeh F, Bouquet S, Debaene B, Mimoz O (2003) Pharmacokinetics and pharmacodynamics of sequential intravenous and subcutaneous teicoplanin in critically ill patients without vasopressors. Intensive Care Med 29: 1528–1534CrossRefPubMedGoogle Scholar
  36. 36.
    Lugo G, Castaneda-Hernandez G (1997) Relationship between hemodynamic and vital support measures and pharmacokinetic variability of amikacin in critically ill patients with sepsis. Crit Care Med 25: 806–811CrossRefPubMedGoogle Scholar
  37. 37.
    Beckhouse MJ, Whyte IM, Byth PL, Napier JC, Smith AJ (1988) Altered aminoglycoside pharmacokinetics in the critically ill. Anaesth Intensive Care 16: 418–422PubMedGoogle Scholar
  38. 38.
    Noel G, Strauss R, Shah A, Bagchi P (2008) Ceftobiprole versus ceftazidime combined with linezolid for treatment of patients with nosocomial pneumonia. ICAAC/IDSA Poster K-486 (abst)Google Scholar
  39. 39.
    Roberts JA, Webb SA, Paterson DL, Ho KM, Lipman J (2009) A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 37: 2071–2078CrossRefPubMedGoogle Scholar
  40. 40.
    Adembri C, Fallani S, Cassetta MI, et al (2008) Linezolid pharmacokinetic/pharmacodynamic profile in critically ill septic patients: intermittent versus continuous infusion. Int J Antimicrob Agents 31: 122–129CrossRefPubMedGoogle Scholar
  41. 41.
    Thallinger C, Buerger C, Plock N, et al (2008) Effect of severity of sepsis on tissue concentrations of linezolid. J Antimicrob Chemother 61: 173–176CrossRefPubMedGoogle Scholar
  42. 42.
    Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43: 925–942CrossRefPubMedGoogle Scholar
  43. 43.
    Pea F, Furlanut M, Negri C, et al (2009) Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in the critically ill patients: the Optivanco study. Antimicrob Agents Chemother 53: 1863–1867CrossRefPubMedGoogle Scholar
  44. 44.
    Pea F, Porreca L, Baraldo M, Furlanut M (2000) High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother 45: 329–335CrossRefPubMedGoogle Scholar
  45. 45.
    Rello J, Sole-Violan J, Sa-Borges M, et al (2005) Pneumonia caused by oxacillin-resistant Staphylococcus aureus treated with glycopeptides. Crit Care Med 33: 1983–1987CrossRefPubMedGoogle Scholar
  46. 46.
    Wysocki M, Delatour F, Faurisson F, et al (2001) Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 45: 2460–2467CrossRefPubMedGoogle Scholar
  47. 47.
    Conil JM, Georges B, de Lussy A, et al (2008) Ciprofloxacin use in critically ill patients: pharmacokinetic and pharmacodynamic approaches. Int J Antimicrob Agents 32: 505–510CrossRefPubMedGoogle Scholar
  48. 48.
    Pea F, Di Qual E, Cusenza A, Brollo L, Baldassarre M, Furlanut M (2003) Pharmacokinetics and pharmacodynamics of intravenous levofloxacin in patients with early-onset ventilatorassociated pneumonia. Clin Pharmacokinet 42: 589–598CrossRefPubMedGoogle Scholar
  49. 49.
    Lipman J, Scribante J, Gous AG, Hon H, Tshukutsoane S (1998) Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. The Baragwanath Ciprofloxacin Study Group. Antimicrob Agents Chemother 42: 2235–2239PubMedGoogle Scholar
  50. 50.
    Sun HK, Kuti JL, Nicolau DP (2005) Pharmacodynamics of antimicrobials for the empirical treatment of nosocomial pneumonia: a report from the OPTAMA Program. Crit Care Med 33: 2222–2227CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • A. A. Udy
    • 1
  • J. A. Roberts
    • 2
  • J. Lipman
    • 3
  1. 1.Department of Anesthesia and Intensive CareHammersmith HospitalLondonUK
  2. 2.Burns, Trauma and Critical Care Research Centre, The University of QueenslandRoyal Brisbane and Women's HospitalHerstonAustralia
  3. 3.Department of Intensive Care MedicineRoyal Brisbane and Women's HospitalBrisbaneAustralia

Personalised recommendations