Cerebral Perfusion in Sepsis

  • C. S. Burkhart
  • M. Siegemund
  • L. A. Steiner
Conference paper


Sepsis, the host’s reaction to infection, characteristically includes multi-organ dysfunction. Brain dysfunction is often one of the first clinical symptoms in sepsis and may manifest as sepsis-associated delirium in up to 70 % of patients [1, 2], less often as focal deficits or seizures [3]. As severely reduced global perfusion leading to hypotension, maldistribution of regional blood flow, and tissue hypoperfusion is a key feature of severe sepsis and septic shock, the question whether there is a link between cerebral perfusion and brain dysfunction in sepsis is obvious. However, clinical and experimental data on cerebral perfusion in sepsis are often inconsistent and most reports only include small numbers of animals or patients. We summarize the current literature on the effects of the inflammatory response on cerebral perfusion and review the effects of altered cerebral perfusion on brain function in sepsis.


Septic Shock Cerebral Blood Flow Mean Arterial Pressure Septic Patient Cerebral Perfusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pytel P, Alexander JJ (2009) Pathogenesis of septic encephalopathy. Curr Opin Neurol 22: 283–287CrossRefPubMedGoogle Scholar
  2. 2.
    Papadopoulos MC, Davies DC, Moss RF, Tighe D, Bennett ED (2000) Pathophysiology of septic encephalopathy: a review. Crit Care Med 28: 3019–3024CrossRefPubMedGoogle Scholar
  3. 3.
    Nagaratnam N, Brakoulias V, Ng K (2002) Multiple cerebral infarcts following septic shock. J Clin Neurosci 9: 473–476CrossRefPubMedGoogle Scholar
  4. 4.
    Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Francoise G (2004) The neuropathology of septic shock. Brain Pathol 14: 21–33CrossRefPubMedGoogle Scholar
  5. 5.
    Siami S, Annane D, Sharshar T (2008) The encephalopathy in sepsis. Crit Care Clin 24: 67–82CrossRefPubMedGoogle Scholar
  6. 6.
    Roth J, Harre EM, Rummel C, Gerstberger R, Hubschle T (2004) Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci 9: 290–300CrossRefPubMedGoogle Scholar
  7. 7.
    Sharshar T, Gray F, Lorin de la Grandmaison G, et al (2003) Apoptosis of neurons in cardio vascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362: 1799–1805CrossRefPubMedGoogle Scholar
  8. 8.
    Wong ML, Bongiorno PB, Rettori V, McCann SM, Licinio J (1997) Interleukin (IL) Ibeta, IL-1 receptor antagonist, IL-10, and IL-13 gene expression in the central nervous system and anterior pituitary during systemic inflammation: pathophysiological implications. Proc Natl Acad Sci USA 94: 227–232CrossRefPubMedGoogle Scholar
  9. 9.
    Freyer D, Manz R, Ziegenhorn A, et al (1999) Cerebral endothelial cells release TNF-alpha after stimulation with cell walls of Streptococcus pneumoniae and regulate inducible nitric oxide synthase and ICAM-1 expression via autocrine loops. J Immunol 163: 4308–4314PubMedGoogle Scholar
  10. 10.
    Hofer S, Bopp C, Hoerner C, et al (2008) Injury of the blood brain barrier and up-regulation of icam-1 in polymicrobial sepsis. J Surg Res 146: 276–281PubMedGoogle Scholar
  11. 11.
    Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Lond) 96: 461–466CrossRefGoogle Scholar
  12. 12.
    Sharshar T, Hopkinson NS, Orlikowski D, Annane D (2005) Science review: The brain in sepsis-culprit and victim. Crit Care 9: 37–44CrossRefPubMedGoogle Scholar
  13. 13.
    Ari I, Kafa IM, Kurt MA (2006) Perimicrovascular edema in the frontal cortex in a rat model of intraperitoneal sepsis. Exp Neurol 198: 242–249CrossRefPubMedGoogle Scholar
  14. 14.
    Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ (2008) TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-I. Neurochem Int 52: 447–456CrossRefPubMedGoogle Scholar
  15. 15.
    Sharshar T, Carlier R, Bernard F, et al (2007) Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med 33: 798–806CrossRefPubMedGoogle Scholar
  16. 16.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142PubMedGoogle Scholar
  17. 17.
    Avontuur JA, Bruining HA, Ince C (1997) Nitric oxide causes dysfunction of coronary autoregulation in endotoxemic rats. Cardiovasc Res 35: 368–376CrossRefPubMedGoogle Scholar
  18. 18.
    Szabo C (1995) Alterations in nitric oxide production in various forms of circulatory shock. New Horiz 3: 2–32PubMedGoogle Scholar
  19. 19.
    Marshall JJ, Wei EP, Kontos HA (1988) Independent blockade of cerebral vasodilation from acetylcholine and nitric oxide. Am J Physiol 255: H847–854PubMedGoogle Scholar
  20. 20.
    Booke M, Westphal M, Hinder F, Traber LD, Traber DL (2003) Cerebral blood flow is not altered in sheep with Pseudomonas aeruginosa sepsis treated with norepinephrine or nitric oxide synthase inhibition. Anesth Analg 96: 1122–1128PubMedGoogle Scholar
  21. 21.
    Bowton DL, Bertels NH, Prough DS, Stump DA (1989) Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med 17: 399–403CrossRefPubMedGoogle Scholar
  22. 22.
    Maekawa T, Fujii Y, Sadamitsu D, et al (1991) Cerebral circulation and metabolism in patients with septic encephalopathy. Am J Emerg Med 9: 139–143CrossRefPubMedGoogle Scholar
  23. 23.
    Pfister D, Schmidt B, Smielewski P, et al (2008) Intracranial pressure in patients with sepsis. Acta Neurochir Suppl 102: 71–75CrossRefPubMedGoogle Scholar
  24. 24.
    Moller K, Strauss GI, Qvist J, et al (2002) Cerebral blood flow and oxidative metabolism during human endotoxemia. J Cereb Blood Flow Metab 22: 1262–1270CrossRefPubMedGoogle Scholar
  25. 25.
    Matta BF, Stow PJ (1996) Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth 76: 790–794PubMedGoogle Scholar
  26. 26.
    Thees C, Kaiser M, Scholz M, et al (2007) Cerebral haemodynamics and carbon dioxide reactivity during sepsis syndrome. Crit Care 11: R123CrossRefPubMedGoogle Scholar
  27. 27.
    Terborg C, Schummer W, Albrecht M, Reinhart K, WeiHer C, Rother J (2001) Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med 27: 1231–1234CrossRefPubMedGoogle Scholar
  28. 28.
    Bowie RA, O'Connor PJ, Mahajan RP (2003) Cerebrovascular reactivity to carbon dioxide in sepsis syndrome. Anaesthesia 58: 261–265CrossRefPubMedGoogle Scholar
  29. 29.
    Smith SM, Padayachee S, Modaresi KB, Smithies MN, Bihari DJ (1998) Cerebral blood flow is proportional to cardiac index in patients with septic shock. J Crit Care 13: 104–109CrossRefPubMedGoogle Scholar
  30. 30.
    Pfister D, Siegemund M, Dell-Kuster S, et al (2008) Cerebral perfusion in sepsis-associated delirium. Crit Care 12: R63CrossRefPubMedGoogle Scholar
  31. 31.
    Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M (2009) Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care 10: 122–128CrossRefPubMedGoogle Scholar
  32. 32.
    Ebersoldt M, Sharshar T, Annane D (2007) Sepsis-associated delirium. Intensive Care Med 33: 941–950CrossRefPubMedGoogle Scholar
  33. 33.
    Sprung CL, Peduzzi PN, Shatney CH, et al (1990) Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med 18: 801–806CrossRefPubMedGoogle Scholar
  34. 34.
    Eggers V, Schilling A, Kox WJ, Spies C (2003) [Septic encephalopathy. Diagnosis und therapy]. Anaesthesist 52: 294–303CrossRefPubMedGoogle Scholar
  35. 35.
    Zauner C, Gendo A, Kramer L, et al (2002) Impaired subcortical and cortical sensory evoked potential pathways in septic patients. Crit Care Med 30: 1136–1139CrossRefPubMedGoogle Scholar
  36. 36.
    Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275: 470–473CrossRefPubMedGoogle Scholar
  37. 37.
    Strebel SP, Kindler C, Bissonnette B, Tschaler G, Deanovic D (1998) The impact of systemic vasoconstrictors on the cerebral circulation of anesthetized patients. Anesthesiology 89: 67–72CrossRefPubMedGoogle Scholar
  38. 38.
    Pfister D, Strebel SP, Steiner LA (2008) Effects of catecholamines on cerebral blood vessels in patients with traumatic brain injury. Eur J Anaesthesiol Suppl 42: 98–103CrossRefPubMedGoogle Scholar
  39. 39.
    Edvinsson L, Hardebo JE, MacKenzie ET, Owman C (1978) Effect of exogenous noradrenaline on local cerebral blood flow after osmotic opening of the blood-brain barrier in the rat. J Physiol 274: 149–156PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • C. S. Burkhart
    • 1
  • M. Siegemund
    • 2
  • L. A. Steiner
    • 3
  1. 1.Department of Anesthesia and Intensive Care MedicineUniversity HospitalBaselSwitzerland
  2. 2.Department of Anesthesia and Intensive Care Medicine Operative Intensive Care UnitUniversity HospitalBaselSwitzerland
  3. 3.Department of AnesthesiologyCentre Hospitalier Universitaire VaudoisLausanneSwitzerland

Personalised recommendations