Venous Oxygen Saturation as a Physiologic Transfusion Trigger

  • B. Vallet
  • E. Robin
  • G. Lebuffe
Conference paper


Venous oxygen saturation is a clinical tool which integrates the whole body oxygen uptake-to-delivery (VO2-DO2) relationship. In the clinical setting, in the absence of pulmonary artery catheter (PAC)-derived mixed venous oxygen saturation (SvO2), the central venous oxygen saturation (ScvO2) is increasingly being used as a reasonably accurate surrogate [1]. Central venous catheters (CVCs) are simpler to insert, and generally safer and cheaper than PACs. The evc allows sampling of blood for measurement of ScvO2 or even continuous monitoring if an oximetry catheter is being used. The normal range for SvO2 is 68 to 77 % and ScvO2 is considered to be 5 % above these values [2].


Mean Arterial Pressure P300 Latency Systolic Arterial Pressure Mixed Venous Oxygen Saturation Central Venous Oxygen Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U (2005) Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 103: 249–257CrossRefPubMedGoogle Scholar
  2. 2.
    Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30: 1572–1578CrossRefPubMedGoogle Scholar
  3. 3.
    Rasanen J (1990) Mixed venous oximetry may detect critical oxygen delivery. Anesth Analg 71: 567–568CrossRefPubMedGoogle Scholar
  4. 4.
    Vallet B, Singer M (2006) Hypotension. In: Ramsay G (ed) Patient-Centred Acute Care Training, First Edition. European Society of Intensive Care Medicine, BrusselsGoogle Scholar
  5. 5.
    Ronco JJ, Fenwick JC, Tweeddale MG, et al (1993) Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA 270: 1724–1730CrossRefPubMedGoogle Scholar
  6. 6.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377CrossRefPubMedGoogle Scholar
  7. 7.
    Adamczyk S, Robin E, Barreau O, et al (2009) [Contribution of central venous oxygen saturation in postoperative blood transfusion decision]. Ann Fr Anesth Reanim 28: 522–530PubMedGoogle Scholar
  8. 8.
    Conference de consensus (2003) Société de réanimation de langue française-XXIIIe Conférence de consensus en réanimation et en médecine d'urgence — jeudi 23 octobre 2003: Transfusion érythrocytaire en réanimation (nouveau-né exclu). Réanimation 12: 531–537CrossRefGoogle Scholar
  9. 9.
    van Woerkens EC, Trouwborst A, van Lanschot JJ (1992) Profound hemodilution: what is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human? Anesth Analg 75: 818–821PubMedGoogle Scholar
  10. 10.
    Lieberman JA, Weiskopf RB, Kelley SD, et al (2000) Critical oxygen delivery in conscious humans is less than 7. 3−1.min−1, Anesthesiology 92: 407–413CrossRefPubMedGoogle Scholar
  11. 11.
    Leung JM, Weiskopf RB, Feiner J, et al (2000) Electrocardiographic ST-segment changes during acute, severe isovolemic hemodilution in humans. Anesthesiology 93: 1004–1010CrossRefPubMedGoogle Scholar
  12. 12.
    Spahn DR, Zollinger A, Schlumpf RB, et al (1996) Hemodilution tolerance in elderly patients without known cardiac disease. Anesth Analg 82: 681–686CrossRefPubMedGoogle Scholar
  13. 13.
    Spahn DR, Schmid ER, Seifert B, Pasch T (1996) Hemodilution tolerance in patients with coronary artery disease who are receiving chronic beta-adrenergic blocker therapy Anesth Analg 82: 687–694CrossRefPubMedGoogle Scholar
  14. 14.
    Weiskopf RB, Feiner J, Hopf HW, et al (2002) Oxygen reverses deficits of cognitive function and memory and increased heart rate induced by acute severe isovolemic anemia. Anesthesiology 96: 871–877CrossRefPubMedGoogle Scholar
  15. 15.
    Weiskopf RB, Toy P, Hopf HW, et al (2005) Acute isovolemic anemia impairs central processing as determined by P300 latency. Clin Neurophysiol 116: 1028–1032CrossRefPubMedGoogle Scholar
  16. 16.
    Spahn DR, Madjdpour C (2006) Physiologic transfusion triggers: do we have to use (our) brain? Anesthesiology 104: 905–906CrossRefPubMedGoogle Scholar
  17. 17.
    Weiskopf RB, Feiner J, Hopf H, et al (2006) Fresh blood and aged stored blood are equally efficacious in immediately reversing anemia-induced brain oxygenation deficits in humans. Anesthesiology 104: 911–920CrossRefPubMedGoogle Scholar
  18. 18.
    Madjdpour C, Spahn DR, Weiskopf RB (2006) Anemia and perioperative red blood cell transfusion: a matter of tolerance. Crit Care Med 34: S102–108CrossRefPubMedGoogle Scholar
  19. 19.
    Vallet B, Adamczyk S, Barreau O, Lebuffe G (2007) Physiologic transfusion triggers. Best Pract Res Clin Anaesthesiol 21: 173–181CrossRefPubMedGoogle Scholar
  20. 20.
    Orlov D, O'Farrell R, McCluskey SA, et al (2009) The clinical utility of an index of global oxygenation for guiding red blood cell transfusion in cardiac surgery. Transfusion 49: 682–688CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • B. Vallet
    • 1
  • E. Robin
    • 1
  • G. Lebuffe
    • 1
  1. 1.Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of LilleLilleFrance

Personalised recommendations