Antibiotic Stewardship: Possibilities when Resources Are Limited

  • D. Curcio
Conference paper

Abstract

Infections caused by multidrug-resistant bacteria continue to challenge physicians in daily practice. There is growing animicrobial resistance among the Gram-positive and Gram-negative pathogens that cause infections in the hospital and in the community [1, 2, 3]. Rice recently called these the “ESKAPE” pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) [2] to emphasize that they currently cause the majority of world-wide hospital infections and effectively ‘escape’ the effects of antibacterial drugs.

Keywords

Argentina Cephalosporin Fluoroquinolones Aires Ceftazidime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giske CG, Monnet DL, Cars O, et al (2008) Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother 52: 813–821CrossRefPubMedGoogle Scholar
  2. 2.
    Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197: 1079–1081CrossRefPubMedGoogle Scholar
  3. 3.
    Spellberg B, Guidos R, Gilbert D, et al (2008) The epidemic of antibiotic resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46: 155–164CrossRefPubMedGoogle Scholar
  4. 4.
    Monroe S, Polk R (2000) Antimicrobial use and bacterial resistance. Curr Opin Microbiol 3: 496-501Google Scholar
  5. 5.
    Dellit TH, Owens RC, McGowan JE Jr, et al (2007) Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin Infect Dis 44: 159–177CrossRefPubMedGoogle Scholar
  6. 6.
    Drew RH (2009) Antimicrobial stewardship programs: how to start and steer a successful program. J Manag Care Pharm 15 (Suppl 2): S18–23Google Scholar
  7. 7.
    Shlaes DM, Gerding DN, John JF Jr, et al (1997) Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Clin Infect Dis 25: 584–599CrossRefPubMedGoogle Scholar
  8. 8.
    Patterson JE, Hardin TC, Kelly CA, et al (2000) Association of antibiotic utilization measures and control of multiple-drug resistance in Klebsiella pneumoniae. Infect Control Hosp Epidemiol 21: 455–458CrossRefPubMedGoogle Scholar
  9. 9.
    Weber DJ (2006) Collateral damage and what the future might hold. The need to balance prudent antibiotic utilization and stewardship with effective patient management. Int J Infect Dis 10 (suppl 2): S17–S24CrossRefGoogle Scholar
  10. 10.
    Eagye KJ, Kuti JL, Nicolau DP (2009) Risk factors and outcomes associated with isolation of meropenem high-level-resistant Pseudomonas aeruginosa. Infect Control Hosp Epidemiol 30: 746–752CrossRefPubMedGoogle Scholar
  11. 11.
    Giakoupi P, Maltezou H, Polemis M, et al (2009) KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperepidemic clone. Euro Surveill 14: pii19218Google Scholar
  12. 12.
    Tsai HT, Wang JT, Chen CJ, et al (2008) Association between antibiotic usage and subsequent colonization or infection of extensive drug-resistant Acinetobacter baumannii: a matched case-control study in intensive care units. Diagn Microbiol Infect Dis 62: 298–305CrossRefPubMedGoogle Scholar
  13. 13.
    Markogiannakis A, Fildisis G, Tsiplakou S, et al (2008) Cross-transmission of multidrugresistant Acinetobacter baumannii clonal strains causing episodes of sepsis in a trauma intensive care unit. Infect Control Hosp Epidemiol 29: 410–417CrossRefPubMedGoogle Scholar
  14. 14.
    Monnet DL, MacKenzie FM, López-Lozano JM, et al (2004) Antimicrobial drug use and methicillin-resistant Staphylococcus aureus, Aberdeen, 1996–2000. Emerg Infect Dis 10: 1432–1441PubMedGoogle Scholar
  15. 15.
    Henderson DK (2006) Managing methicillin-resistant staphylococci: a paradigm for preventing nosocomial transmission of resistant organisms. Am J Infect Control 34 (Suppl 1): S46–54CrossRefGoogle Scholar
  16. 16.
    Ramsay C, Brown E, Hartman G, et al (2003) Room for improvement: a systematic review of the quality of evaluations of interventions to improve hospital antibiotic prescribing. J Antimicrob Chemother 52: 764–771CrossRefPubMedGoogle Scholar
  17. 17.
    White AC Jr, Atmar RL, Wilson J, et al (1997) Effects of requiring prior authorization for selected antimicrobials: expenditures, susceptibilities, and clinical outcomes. Clin Infect Dis 25: 230–239CrossRefPubMedGoogle Scholar
  18. 18.
    Patterson JE (2006) Multidrug-resistant gram-negative pathogens: multiple approaches and measures for prevention. Infect Control Hosp Epidemiol 27: 889–892CrossRefPubMedGoogle Scholar
  19. 19.
    Lesch CA, Itokazu GS, Danziger LH, et al (2001) Multi-hospital analysis of antimicrobial usage and resistance trends. Diagn Microbiol Infect Dis 41: 149–154CrossRefPubMedGoogle Scholar
  20. 20.
    Rahal JJ, Urban C, Horn D, et al (1998) Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 280: 1233–1237CrossRefPubMedGoogle Scholar
  21. 21.
    Kassirer JP (1998) Doctor discontent. N Engl J Med 339: 1543–1544CrossRefPubMedGoogle Scholar
  22. 22.
    Koppel R, Metlay JP, Cohen A, et al (2005) Role of computerized physician order entry systems in facilitating medication errors. JAMA 293: 1197–1203CrossRefPubMedGoogle Scholar
  23. 23.
    Fraser GL, Stogsdill P, Dickens JD Jr, et al (1997) Antibiotic optimization. An evaluation of patient safety and economic outcomes. Arch Intern Med 157: 1689–1694CrossRefPubMedGoogle Scholar
  24. 24.
    Solomon DH, Van Houten L, Glynn RJ, et al (2001) Academic detailing to improve use of broad-spectrum antibiotics at an academic medical center. Arch Intern Med 161: 1897–1902CrossRefPubMedGoogle Scholar
  25. 25.
    Carling P, Fung T, Killion A, et al (2003) Favorable impact of a multidisciplinary antibiotic management program conducted during 7 years. Infect Control Hosp Epidemiol 24: 699–706CrossRefPubMedGoogle Scholar
  26. 26.
    Larocco A Jr (2003) Concurrent antibiotic review programs-a role for infectious diseases specialists at small community hospitals. Clin Infect Dis 37: 742–743CrossRefPubMedGoogle Scholar
  27. 27.
    Iasovich A, Curcio D, Caso Nuñez H, et al (2003) Impact of the infectious disease team on the rationale for antibiotic usage: an expeditious intervention strategy which avoids limiting the physician’s freedom. J Chemother 15: 409–411Google Scholar
  28. 28.
    Curcio D, Belloni R (2005) Strategic alliance between the infectious diseases specialist and intensive care unit physician for change in antibiotic use. J Chemother 17: 74–76PubMedGoogle Scholar
  29. 29.
    Cosgrove SE, Patel A, Song X, et al (2007) Impact of different methods of feedback to clinicians after postprescription antimicrobial review based on the Centers For Disease Control and Prevention’s 12 steps to prevent antimicrobial resistance among hospitalized adults. Infect Control Hosp Epidemiol 28: 641–646CrossRefPubMedGoogle Scholar
  30. 30.
    Apisarnthanarak A, Danchaivijitr S, Khawcharoenporn T, et al (2006) Effectiveness of education and an antibiotic-control program in a tertiary care hospital in Thailand. Clin Infect Dis 42: 768–775CrossRefPubMedGoogle Scholar
  31. 31.
    Mol PG, Wieringa JE, Nannanpanday PV, et al (2005) Improving compliance with hospital antibiotic guidelines: a time-series intervention analysis. J Antimicrob Chemother 55: 550–557CrossRefPubMedGoogle Scholar
  32. 32.
    Echols RM, Kowalsky SF (1984) The use of an antibiotic order form for antibiotic utilization review: influence on physicians’ prescribing patterns. J Infect Dis 150: 803–7PubMedGoogle Scholar
  33. 33.
    Bolon MK, Arnold AD, Feldman HA, Goldmann DA, Wright SB (2005) An antibiotic order form intervention does not improve or reduce vancomycin use. Pediatr Infect Dis J 24: 1053–1058CrossRefPubMedGoogle Scholar
  34. 34.
    Ibrahim EH, Sherman G, Ward S, et al (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000 118: 146–155CrossRefGoogle Scholar
  35. 35.
    Leibovici L, Shraga I, Drucker M, et al (1998) The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 244: 379–386CrossRefPubMedGoogle Scholar
  36. 36.
    Luna CM, Vujacich P, Niederman MS, et al (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest Ill: 676–685CrossRefGoogle Scholar
  37. 37.
    Rello J, Gallego M, Mariscal D et al (1997) The value of routine microbial investigation in ventilator-associated pneumonia Am J Respir Crit Care Med 156: 196–200PubMedGoogle Scholar
  38. 38.
    Kollef MH, Kollef KE (2005) Antibiotic utilization and outcomes for patients with clinically suspected ventilator-associated pneumonia and negative quantitative BAL culture results. Chest 128: 2706–2713CrossRefPubMedGoogle Scholar
  39. 39.
    Bergmans DC, Bonten MJ, Gaillard CA, et al (1997) Indications for antibiotic use in ICU patients: a one-year prospective surveillance. J Antimicrob Chemother 39: 527–535CrossRefPubMedGoogle Scholar
  40. 40.
    Elhanan G, Sarhat M, Raz R (1997) Empiric antibiotic treatment and the misuse of culture results and antibiotic sensitivities in patients with community-acquired bacteraemia due to urinary tract infection. J Infect 35: 283–288CrossRefPubMedGoogle Scholar
  41. 41.
    Safdar N, Handelsman J, Maki DG (2004) Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 4: 519–527CrossRefPubMedGoogle Scholar
  42. 42.
    Jaruratanasirikul S, Sriwiriyajan S, Punyo J (2005) Comparison of the pharmacodynamics of meropenem in patients with ventilator-associated pneumonia following administration by 3-hour infusion or bolus injection. Antimicrob Agents Chemother 49: 1337–1339CrossRefPubMedGoogle Scholar
  43. 43.
    Lorente L, Lorenzo L, Martín MM, et al (2006) Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharmacother 40: 219–223CrossRefPubMedGoogle Scholar
  44. 44.
    Lodise TP Jr, Lomaestro B, Drusano GL (2007) Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44: 357–363CrossRefPubMedGoogle Scholar
  45. 45.
    Moise-Broder PA, Forrest A, Birmingham MC, et al (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43: 925–942CrossRefPubMedGoogle Scholar
  46. 46.
    Hidayat LK, Hsu DI, Quist R, et al (2006) High-dose vancomycin therapy for methicillinresistant Staphylococcus aureus infections: efficacy and toxicity Arch Intern Med 166: 2138–2144CrossRefPubMedGoogle Scholar
  47. 47.
    Lodise TP, Lomaestro B, Graves J, et al (2008) Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 52: 1330–1336CrossRefPubMedGoogle Scholar
  48. 48.
    Lodise TP, Miller CD, Graves J, et al (2008) Predictors of high vancomycin MIC values among patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 62: 1138–1141CrossRefPubMedGoogle Scholar
  49. 49.
    Babinchak T, Ellis-Grosse E, Dartois N, et al (2005) The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: analysis of pooled clinical trial data. Clin Infect Dis 41: S354–366CrossRefGoogle Scholar
  50. 50.
    Fridkin SK (2003) Routine cycling of antimicrobial agents as an infectioncontrol measure. Clin Infect Dis 36: 1438–1444CrossRefPubMedGoogle Scholar
  51. 51.
    Martinez JA, Nicolas JM, Marco F, et al (2006) Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units. Crit Care Med 34: 329–336CrossRefPubMedGoogle Scholar
  52. 52.
    Sandiumenge A, Diaz E, Rodriguez A, et al (2006) Impact of diversity of antibiotic use on the development of antimicrobial resistance. J Antimicrob Chemother 57: 1197–1204CrossRefPubMedGoogle Scholar
  53. 53.
    Evans RS, Pestotnik SL, Classen DC, et al (1998) A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med 338: 232–238CrossRefPubMedGoogle Scholar
  54. 54.
    Nebeker JR, Hoffman JM, Weir CR, et al (2005) High rates of adverse drug events in a highly computerized hospital. Arch Intern Med 165: 1111–1116CrossRefPubMedGoogle Scholar
  55. 55.
    Richards MJ, Robertson MB, Dartnell JG, et al (2003) Impact of a web-based antimicrobial approval system on broad-spectrum cephalosporin use at a teaching hospital. Med J Aust 178: 386–390PubMedGoogle Scholar
  56. 56.
    Leblebicioglu H, Akbulut A, Ulusoy S, et al (2003) Informal consultations in infectious diseases and clinical microbiology practice. Clin Microbiol Infect 9: 724–726CrossRefPubMedGoogle Scholar
  57. 57.
    Davey P, Brown E, Fenelon L, et al (2005) Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev CD003543Google Scholar
  58. 58.
    Martin C, Ofotokun I, Rapp R, et al (2005) Results of an antimicrobial control program at a university hospital. Am J Health Syst Pharm 62: 732–738PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • D. Curcio
    • 1
  1. 1.Infectious Diseases Department Instituto Sacre CourInfectologia Institucional SRLCapital FederalArgentina

Personalised recommendations