Standardization of Care to Improve Outcomes of Patients with Ventilator-associated Pneumonia and Severe Sepsis

  • M. H. Kollef
  • S. T. Micek
Conference paper


Translating the results of research into clinical practice in critically ill patients is a challenging endeavor and often a slow, complex process. The medical literature is replete with evidence-based guidelines and protocols aimed at standardizing processes of medical care in an attempt to improve patient outcomes [1]. Despite the widespread availability of such documents, non-adherence to guidelines is readily apparent and directly impacts patient care [2]. Explanations for the lack of guideline adherence include excessive workloads for bedside healthcare providers (nurses, therapists, physicians), disagreement in interpretation of clinical trials, limited evidence in support of specific pharmacologic or non-pharmacologic treatment strategies, and simply the hesitancy to change practices at the beside (1,2).


Septic Shock Severe Sepsis Computerize Physician Order Entry Drotrecogin Alfa Computerize Physician Order Entry System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Micek ST, Kollef MH (2007) Using protocols to improve the outcomes of critically ill patients with infection: Focus on ventilator-associated pneumonia and severe sepsis. In: Rello J, Kollef M, Diaz E, Rodriguez A (eds) Infectious Diseases in Critical Care. Springer-Verlag, Heidelberg, pp 78–89CrossRefGoogle Scholar
  2. 2.
    Kollef MH (2009) Clinical practice improvement initiatives: Don’t be satisfied with the early results. Chest 136: 335–338CrossRefPubMedGoogle Scholar
  3. 3.
    Ely EW, Baker AM, Dunagan DP, et al (1996) Effect of the duration of mechanical ventilation on identifying patients capable of breathing spontaneously. N Engl J Med 335: 1864–1869CrossRefPubMedGoogle Scholar
  4. 4.
    Kollef MH, Shapiro SD, Silver P, et al (1997) A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med 25: 567–574CrossRefPubMedGoogle Scholar
  5. 5.
    Marelich GP, Murin S, Battistella F, Inciarda J, Vierra T, Roby M (2000) Protocol weaning of mechanical ventilation in medical and surgical patients by respiratory care practitioners and nurses. Effect on weaning time and incidence of ventilator associated pneumonia. Chest 118: 459–467CrossRefPubMedGoogle Scholar
  6. 6.
    Ely EW, Bennett PA, Bowton DL, Murphy SM, Florance AM, Haponik EF (1999) Large scale implementation of a respiratory therapist-driven protocol for ventilator weaning. Am J Respir Crit Care Med 159: 439–446PubMedGoogle Scholar
  7. 7.
    Horst HM, Mouro D, Hall-Jenssens RA, Pamukov N (1998) Decrease in ventilation time with a standardized weaning process. Arch Surg 133: 483–488CrossRefPubMedGoogle Scholar
  8. 8.
    Brook AD, Ahrens TS, Schaiff R, et al (1999) Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 27: 2609–2615CrossRefPubMedGoogle Scholar
  9. 9.
    Kress JP, Pohlman AS, O’Connor MF, et al. (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342: 1471–1477CrossRefPubMedGoogle Scholar
  10. 10.
    Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345: 1359–1367CrossRefPubMedGoogle Scholar
  11. 11.
    Preissig CM, Hansen I, Roerig PL, Rigby MR (2008) A protocolized approach to identify and manage hyperglycemia in a pediatric critical care unit. Pediatr Crit Care Med 9: 581–588CrossRefPubMedGoogle Scholar
  12. 12.
    Lecomte P, Foubert L, Nobels F, et al (2008) Dynamic tight glycemic control during and after cardiac surgery is effective, feasible, and safe. Anesth Analg 107: 51–58CrossRefPubMedGoogle Scholar
  13. 13.
    Zack JE, Garrison T, Trovillion E, et al (2002) Effect of an education program aimed at reducing the occurrence of ventilator-associated pneumonia. Crit Care Med 30: 2407–2412CrossRefPubMedGoogle Scholar
  14. 14.
    Babcock HM, Zack JE, Garrison T, et al (2004) An educational intervention to reduce ventilator-associated pneumonia in an integrated health system: a comparison of effects. Chest 125: 2224–2231CrossRefPubMedGoogle Scholar
  15. 15.
    McMullen KM, Zack J, Coopersmith CM, Kollef M, Dubberke E, Warren DK (2007) Use of hypochlorite solution to decrease rates of Clostridium difficile-associated diarrhea. Infect Control Hosp Epidemiol 28: 205–207CrossRefPubMedGoogle Scholar
  16. 16.
    Warren DK, Zack JE, Mayfield JL, et al (2004) The effect of an education program on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest 126: 1612–1618CrossRefPubMedGoogle Scholar
  17. 17.
    Merz LR, Warren DK, Kollef MH, Fridkin SK, Fraser VJ (2006) The impact of an antibiotic cycling program on empirical therapy for gram-negative infections. Chest 130: 1672–1678CrossRefPubMedGoogle Scholar
  18. 18.
    Schuerer DJ, Zack JE, Thomas J, et al (2007) Effect of chlorhexidine/silver sulfadiazine-impregnated central venous catheters in an intensive care unit with a low blood stream infection rate after implementation of an educational program: a before-after trial. Surg Infect 8: 445–454CrossRefGoogle Scholar
  19. 19.
    Coopersmith CM, Rebmann TL, Zack JE, et al (2002) Effect of an education program on decreasing catheter-related bloodstream infections in the surgical intensive care unit. Crit Care Med 30: 59–64CrossRefPubMedGoogle Scholar
  20. 20.
    Coopersmith CM, Zack JE, Ward MR, et al (2004) The impact of bedside behavior on catheter-related bacteremia in the intensive care unit. Arch Surg 139: 131–136CrossRefPubMedGoogle Scholar
  21. 21.
    Kollef MH, Ward S (1998) The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 113: 412–420CrossRefPubMedGoogle Scholar
  22. 22.
    Luna CM, Vujacich P, Niederman MS, et al (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111: 676–685CrossRefPubMedGoogle Scholar
  23. 23.
    Alvarez-Lerma F (1996) Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. ICU-Acquired Pneumonia Study Group. Intensive Care Med 22: 387–394CrossRefPubMedGoogle Scholar
  24. 24.
    Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH (2002) Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 122: 262–268CrossRefPubMedGoogle Scholar
  25. 25.
    Niederman MS, Craven DE, Bonten MJ, et al (2005) ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171: 388–416CrossRefGoogle Scholar
  26. 26.
    Namias N, Samiian L, Nino D, et al (2000) Incidence and susceptibility of pathogenic bacteria vary between intensive care units within a single hospital: implications for empiric antibiotic strategies. J Trauma 49: 638–645CrossRefPubMedGoogle Scholar
  27. 27.
    Rello J, Sa-Borges M, Correa H, Baraibar J (1999) Variations in etiology of ventilator-associated pneumonia across four treatment sites: implications for antimicrobial prescribing practices. Am J Respir Crit Care Med 160: 608–613PubMedGoogle Scholar
  28. 28.
    Ibrahim EH, Ward S, Sherman G, Schaiff R, Fraser VJ, Kollef MH (2001) Experience with a clinical guideline for the treatment of ventilator-associated pneumonia. Crit Care Med 29: 1109–1115CrossRefPubMedGoogle Scholar
  29. 29.
    Wood GC, Mueller EW, Croce MA, Boucher BA, Hanes SD, Fabian TC (2005) Evaluation of a clinical pathway for ventilator-associated pneumonia: changes in bacterial flora and the adequacy of empiric antibiotics over a three-year period. Surg Infect 6: 203–213CrossRefGoogle Scholar
  30. 30.
    Lancaster JW, Lawrence KR, Fong JJ, et al (2008) Impact of an institution-specific hospital-acquired pneumonia protocol on the appropriateness of antibiotic therapy and patient outcomes. Pharmacotherapy 28: 852–862CrossRefPubMedGoogle Scholar
  31. 31.
    Soo Hoo GW, Wen E, Nguyen TV, Goetz MB (2005) Impact of clinical guidelines in the management of severe hospital-acquired pneumonia. Chest 128: 2778–2787CrossRefPubMedGoogle Scholar
  32. 32.
    Rello J, Vidaur L, Sandiumenge A, et al (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32: 2183–2190PubMedGoogle Scholar
  33. 33.
    Micek ST, Ward S, Fraser VJ, Kollef MH (2004) A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 125: 1791–1799CrossRefPubMedGoogle Scholar
  34. 34.
    Zack JE, Garrison T, Trovillion E, et al (2002) Effect of an education program aimed at reducing the occurrence of ventilator-associated pneumonia. Crit Care Med 30: 2407–2412CrossRefPubMedGoogle Scholar
  35. 35.
    Babcock HM, Zack JE, Garrison T, et al. (2004) An educational intervention to reduce ventilator-associated pneumonia in an integrated health system. A comparison of effects. Chest 125: 2224–2231CrossRefPubMedGoogle Scholar
  36. 36.
    Hotchkiss RS Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150CrossRefPubMedGoogle Scholar
  37. 37.
    Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365: 63–78CrossRefPubMedGoogle Scholar
  38. 38.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377CrossRefPubMedGoogle Scholar
  39. 39.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327CrossRefPubMedGoogle Scholar
  40. 40.
    Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115: 529–535CrossRefPubMedGoogle Scholar
  41. 41.
    Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C (2003) Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31: 2742–2751CrossRefPubMedGoogle Scholar
  42. 42.
    Micek ST, Isakow W, Shannon W, Kollef MH (2005) Predictors of hospital mortality for patients with severe sepsis treated with drotrecogin alfa (activated). Pharmacotherapy 25: 26–34CrossRefPubMedGoogle Scholar
  43. 43.
    Vyas D, Javadi P, DiPasco PJ, Buchman TG, Hotchkiss RS, Coopersmith CM (2005) Early antibiotic administration but not antibody therapy directed against IL-6 improves survival in septic mice predicted to die on basis of high IL-6 levels. Am J Physiol Regul Integr Comp Physiol 289: R1048-1053Google Scholar
  44. 44.
    Trzeciak S, Dellinger RP, Abate NL, et al (2006) Translating research to clinical practice: A 1year experience with implementing early goal-directed therapy for septic shock in the emergency department. Chest 129: 225–232CrossRefPubMedGoogle Scholar
  45. 45.
    Shapiro NI, Howell MD, Talmor D, et al (2006) Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Crit Care Med 34: 1025–1032CrossRefPubMedGoogle Scholar
  46. 46.
    Micek ST, Roubinian N, Heuring T, et al (2006) A before-after study of a standardized hospital order set for the management of septic shock. Crit Care Med 34: 2707–2713CrossRefPubMedGoogle Scholar
  47. 47.
    Kortgen A, Niederprum P, Bauer M (2006) Implementation of an evidence-based “standard operating procedure” and outcome in septic shock. Crit Care Med 34: 943–949CrossRefPubMedGoogle Scholar
  48. 48.
    Gao F, Melody T, Daniels DF, Giles S, Fox S (2005) The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study. Crit Care 9: R764–770CrossRefGoogle Scholar
  49. 49.
    Thiel S, Asghar MF, Micek S, Reichley RM, Doherty JA, Kollef MH (2009) Hospital-wide impact of a standardized order set for the management of bactermic severe sepsis. Crit Care Med 37: 819–824CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • M. H. Kollef
    • 1
  • S. T. Micek
    • 1
  1. 1.Division of Pulmonary and Critical Care MedicineWashington University School of MedicineSt. LouisUSA

Personalised recommendations