Advertisement

Prevention of Central Venous Catheter-related Infection in the Intensive Care Unit

  • D. Frasca
  • C. Dahyot-Fizelier
  • O. Mimoz
Conference paper

Abstract

In the USA, more than five million patients require central venous access each year. Unfortunately, central venous access can be associated with adverse events that are hazardous to patients and expensive to treat. Infection remains the main complication of intravascular catheters in critically ill patients. Catheter-related bloodstream infections have been reported to occur in 3 to 8 % of inserted catheters and are the first cause of nosocomial bloodstream infection in intensive care units (ICUs), with 80,000 cases annually at a cost of $300 million to $2.3 billon [1]. Additional financial costs may be as high as $30,000 per survivor) including one extra week in the ICU and two to three additional weeks in the hospital. Attributable mortality rates range from 0 to 35 %, depending on the degree of control for severity of illness.

Keywords

Central Venous Catheter Bloodstream Infection Catheter Insertion Central Venous Access Infect Control Hosp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mermel LA (2000) Prevention of intravascular catheter-related infections. Ann Intern Med 132: 391–402PubMedGoogle Scholar
  2. 2.
    O’Grady NP, Alexander M, Dellinger EP, et al. (2002) Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol 23: 759–769CrossRefPubMedGoogle Scholar
  3. 3.
    Herrmann M, Lai QJ, Albrecht RM, Mosher DF (2003) Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis 167: 312–322Google Scholar
  4. 4.
    Centers for Disease Control and Prevention (2001) Issues in healthcare settings: CDC’s 7 Healthcare Safety Challenges. Available at: http://www.cdc.gov/ncidod/dhqp/about_challenges. html. Accessed November 26, 2009Google Scholar
  5. 5.
    Berenholtz SM, Pronovost PJ, Lipsett PA, et al (2004) Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med 32: 2014–2020CrossRefPubMedGoogle Scholar
  6. 6.
    Warren, DK, Zack JE, Mayfield JL, et al (2004) The effect of an education programme on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest 126: 1612–1618CrossRefPubMedGoogle Scholar
  7. 7.
    Eggimann P, Harbarth S, Constantin MN, Touveneau S, Chevrolet JC, Pittet D (2000) Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet 355: 1864–1868CrossRefPubMedGoogle Scholar
  8. 8.
    L’Hériteau F, Olivier M, Maugat S (2007) Impact of a five-year surveillance of central venous catheter infections in the REACAT intensive care unit network in France. J Hosp Infect 66: 123–129CrossRefGoogle Scholar
  9. 9.
    Yilmaz G, Koksal I, Aydin K, Caylan R, Sucu N, Aksoy F (2007) Risk factors of catheter-related bloodstream infections in parenteral nutrition catheterization. J Parenter Enteral Nutr 31: 284–287CrossRefGoogle Scholar
  10. 10.
    Zingg W, Imhof A, Maggiorini M, Stocker R, Keller E, Ruef C (2009) Impact of a prevention strategy targeting hand hygiene and catheter care on the incidence of catheter-related bloodstream infections. Crit Care Med 37: 2167–2173CrossRefPubMedGoogle Scholar
  11. 11.
    Barsuk JH, Cohen ER, Feinglass J, McGaghie WC, Wayne DB (2009) Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med 169: 1420–1423CrossRefPubMedGoogle Scholar
  12. 12.
    Soifer NE, Borzak S, Edlin BR, Weinstein RA (1998) Prevention of peripheral venous catheter complications with an intravenous therapy team: a randomized controlled trial. Arch Intern Med 158: 473–477CrossRefPubMedGoogle Scholar
  13. 13.
    Puntis JW, Holden CE, Smallman S, Finkel Y, George RH, Booth IW (1991) Staff training: a key factor in reducing intravascular catheter sepsis. Arch Dis Child 66: 335–337CrossRefPubMedGoogle Scholar
  14. 14.
    Fridkin SK, Pear SM, Williamson TH, Galgiani IN, Jarvis WR (1996) The role of understaffing in central venous catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 17: 150–158CrossRefPubMedGoogle Scholar
  15. 15.
    Alonso-Echanove J, Edwards JR, Richards MJ, et al (2003) Effect of nurse staffing and antimicrobial-impregnated central venous catheters on the risk for bloodstream infections in intensive care units. Infect Control Hosp Epidemiol 24: 916–925CrossRefPubMedGoogle Scholar
  16. 16.
    Maki DG, Ringer M (1991) Risk factors for infusion-related phlebitis with small peripheral venous catheters: a randomized controlled trial. Ann Intern Med 114: 845–854PubMedGoogle Scholar
  17. 17.
    Sheth NK, Franson TR, Rose HD, Buckmire FL, Cooper JA, Sohnle PG (1983) Colonization of bacteria on polyvinyl chloride and Teflon intravascular catheters in hospitalized patients. J Clin Microbiol 18: 1061–1063PubMedGoogle Scholar
  18. 18.
    Halton KA, Cook DA, Whitby M, Paterson DL, Graves N (2009) Cost effectiveness of antimicrobial catheters in the intensive care unit: addressing uncertainty in the decision. Crit Care 13: R35CrossRefPubMedGoogle Scholar
  19. 19.
    Raad I, Buzaid A, Rhyne J (1997) Minocycline and ethylenediaminetetraacetate for the prevention of recurrent vascular catheter infections. Clin Infect Dis 25: 149–151CrossRefPubMedGoogle Scholar
  20. 20.
    Ramritu P, Halton K, Collignon P (2008) A systematic review comparing the relative effectiveness of antimicrobial-coated catheters in intensive care units. Am J Infect Control 36: 104–117CrossRefPubMedGoogle Scholar
  21. 21.
    Kalfon P, de Vaumas C, Samba D (2007) Comparison of silver-impregnated with standard multi-lumen central venous catheters in critically ill patients. Crit Care Med 35: 1032–1039CrossRefPubMedGoogle Scholar
  22. 22.
    Hockenhull JC, Dwan KM, Smith GW (2009) The clinical effectiveness of central venous catheters treated with anti-infective agents in preventing catheter-related bloodstream infections: a systematic review. Crit Care Med 37: 702–712CrossRefPubMedGoogle Scholar
  23. 23.
    Dezfulian C, Lavelle J, Nallamothu BK, Kaufman SR, Saint S (2003) Rates of infection for single-lumen versus multilumen central venous catheters: a meta-analysis. Crit Care Med 31: 2385–2390CrossRefPubMedGoogle Scholar
  24. 24.
    Merrer J, De Jonghe B, Golliot F; French Catheter Study Group in Intensive Care (2001) Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 286: 700–707CrossRefPubMedGoogle Scholar
  25. 25.
    Ruesch S, Walder B, Tramer MR (2002) Complications of central venous catheters: internal jugular versus subclavian access — a systematic review. Crit Care Med 30: 454–460CrossRefPubMedGoogle Scholar
  26. 26.
    Parienti JJ, Thirion M, Megarbane B, et al (2008) Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA 299: 2413–2422CrossRefPubMedGoogle Scholar
  27. 27.
    Randolph AG, Cook DJ, Gonzales CA, Pribble CG (1996) Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med 24: 2053–2058CrossRefPubMedGoogle Scholar
  28. 28.
    Karakitsos D, Labropoulos N, De Groot E (2006) Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care 10: R162CrossRefPubMedGoogle Scholar
  29. 29.
    Raad II, Hohn DC, Gilbreath BJ, et al (1994) Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 15: 231–238CrossRefPubMedGoogle Scholar
  30. 30.
    Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S (2002) Chlorhexidine compared with povidone iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med 136: 792–801PubMedGoogle Scholar
  31. 31.
    Balamongkhon B, Thamlikitkul V (2007) Bangkok, Thailand. Am J Infect Control 35: 585–588CrossRefPubMedGoogle Scholar
  32. 32.
    Parienti JJ, du Cheyron D, Ramakers M, et al (2004) Alcoholic povidone-iodine to prevent central venous catheter colonization: a randomized unit-crossover study. Crit Care Med 32: 708–713CrossRefPubMedGoogle Scholar
  33. 33.
    Mimoz O, Villeminey S, Ragot S (2007) Chlorhexidine-based antiseptic solution versus alcohol-based povidone-iodine for central venous catheter care. Arch Intern Med 167: 2066–2072CrossRefPubMedGoogle Scholar
  34. 34.
    Spafford PS, Sinkin RA, Cox C (1994) Prevention of central venous catheter-related coagulase-negative staphylococcal sepsis in neonates. J Pediatr 125: 259–263CrossRefPubMedGoogle Scholar
  35. 35.
    Kacica MA, Horgan MJ, Ochoa L, Sandler R, Lepow ML, Venezia RA (1994) Prevention of gram-positive sepsis in neonates weighing less than 1500 g. J Pediatr 125: 253–258CrossRefPubMedGoogle Scholar
  36. 36.
    Randolph AG, Cook DJ, Gonzales CA, Brun-Buisson C (1998) Tunneling short-term central venous catheters to prevent catheter-related infection: a meta-analysis of randomized, controlled trials. Crit Care Med 26: 1452–1457CrossRefPubMedGoogle Scholar
  37. 37.
    Ho KM, Litton E (2006) Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother 58: 281–287CrossRefPubMedGoogle Scholar
  38. 38.
    Timsit JF, Schwebel C, Bouadma L, et al (2009) Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA 301: 1231–1241CrossRefPubMedGoogle Scholar
  39. 39.
    Maki DG, Botticelli JT, LeRoy ML, Thielke TS (1987) Prospective study of replacing administration sets for intravenous therapy at 48-vs 72-hour intervals: 72 hours is safe and cost-effective. JAMA 258: 1777–1781CrossRefPubMedGoogle Scholar
  40. 40.
    Raad I, Hanna HA, Awad A, et al (2001) Optimal frequency of changing intra-venous administration sets: is it safe to prolong use beyond 72 hours? Infect Control Hosp Epidemiol 22: 136–139CrossRefPubMedGoogle Scholar
  41. 41.
    Band JD, Maki DG (1979) Safety of changing intravenous delivery systems at longer than 24-hour intervals. Ann Intern Med 91: 173–178PubMedGoogle Scholar
  42. 42.
    Gillies D, O’Riordan L, Wallen M, Rankin K, Morrison A, Nagy S (2004) Timing of intravenous administration set changes: a systematic review. Infect Control Hosp Epidemiol 25: 240–250CrossRefPubMedGoogle Scholar
  43. 43.
    Sitges-Serra A, Linares J, Perez JL, Jaurrieta E, Lorente L (1985) A randomized trial on the effect of tubing changes on hub colonization and catheter sepsis during parenteral nutrition. JPEN J Parenter Enteral Nutr 9: 322–325CrossRefPubMedGoogle Scholar
  44. 44.
    Salzman MB, Isenberg HD, Rubin LG (1993) Use of disinfectants to reduce microbial contamination of hubs of vascular catheters. J Clin Microbiol 31: 475–479PubMedGoogle Scholar
  45. 45.
    Khalifa R, Dahyot-Fizelier C, Laksiri L (2008) Indwelling time and risk of colonization of peripheral arterial catheters in critically ill patients. Intensive Care Med 34: 1820–1826CrossRefPubMedGoogle Scholar
  46. 46.
    Cobb DK, High KP, Sawyer RG (1992) A controlled trial of scheduled replacement of central venous and pulmonary artery catheter. N Engl J Med 327: 1062–1068CrossRefPubMedGoogle Scholar
  47. 47.
    Cook D, Randolph A, Kemerman P, et al (1997) Central venous catheter replacement strategies: A systematic review of the literature. Crit Care Med 25: 1417–1424CrossRefPubMedGoogle Scholar
  48. 48.
    Zakrzewska-Bode A, Muytjens HL, Liem KD, Hoogkamp-Korstanje JA (1995) Mupirocin resistance in coagulase-negative staphylococci, after topical prophylaxis for the reduction of colonization of central venous catheters. J Hosp Infect 31: 189–193CrossRefPubMedGoogle Scholar
  49. 49.
    Randolph AG, Cook DJ, Gonzales CA, Andrew M (1998) Benefit of heparin in central venous and pulmonary artery catheters: a meta-analysis of randomized controlled trials. Chest 113: 165–171CrossRefPubMedGoogle Scholar
  50. 50.
    Pronovost P, Needham D, Berenholtz S (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355: 2725–2732CrossRefPubMedGoogle Scholar
  51. 51.
    Timsit JF (2007) Diagnosis and prevention of catheter-related infections. Curr Opin Crit Care 13: 563–571CrossRefPubMedGoogle Scholar
  52. 52.
    Mermel LA, Farr BM, Sherertz RJ et al (2001) Guidelines for the management of intravascular catheter-related infections. Infect Control Hosp Epidemiol 22: 222–242CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • D. Frasca
    • 1
  • C. Dahyot-Fizelier
    • 1
  • O. Mimoz
    • 1
  1. 1.Surgical Intensive CareCentre Hospitalier UniversitairePoitiersFrance

Personalised recommendations