Diagnosis and Treatment of the Septic Microcirculation

  • C. Ruiz
  • G. Hernandez
  • C. Ince
Conference paper


Shock has typically been classified into four types: Hypovolemic, cardiogenic, obstructive, and distributive. The first three categories are associated with a decrease in cardiac output, leading to tissue hypoxia. Distributive shock, such as septic shock, results from abnormal distribution of normal or increased cardiac output, secondary to microcirculatory dysfunction. Severe disruption of the microcirculation during sepsis results in a pathologic heterogeneity in microvascular blood flow that occurs as a consequence of the shutdown of weak microcirculatory units. This implies that oxygen transport is shunted from the arterial to the venous compartment, leaving the microcirculation hypoxic, and is the main pathogenic feature of distributive shock. Such a scenario results in maldistribution of microvascular blood flow and a mismatch between oxygen delivery and oxygen demand in different tissues that seems to be the first step in the progression to organ failure [1].


Septic Shock Severe Sepsis Mean Arterial Pressure Microvascular Blood Flow Functional Capillary Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elbers P, Ince C (2006) Mechanisms of critical illness — classifying microcirculatory flow abnormalities in distributive shock. Crit Care 10: 221CrossRefPubMedGoogle Scholar
  2. 2.
    Trzeciak S, Rivers E (2005) Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care 9 (Suppl 4): S20–S26CrossRefPubMedGoogle Scholar
  3. 3.
    Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9 (Suppl 4): S13–S19Google Scholar
  4. 4.
    Vallet B (2002) Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med 30 (Suppl 5): S229–S234CrossRefPubMedGoogle Scholar
  5. 5.
    Segal S (2005) Regulation of blood flow in the microcirculation. Microcirculation 12: 33–45CrossRefPubMedGoogle Scholar
  6. 6.
    Verdant C, De Backer D (2005) How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care 11: 240–244CrossRefPubMedGoogle Scholar
  7. 7.
    Klijn E, Den Uil CA, Bakker J, Ince C (2008) The Heterogeneity of the Microcirculation in Critical Illness. Clin Chest Med 29: 643–654CrossRefPubMedGoogle Scholar
  8. 8.
    Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27: 1369–1377CrossRefPubMedGoogle Scholar
  9. 9.
    Ellis CG, Jagger JE, Sharpe MD (2005) The microcirculation as a functional system. Crit Care 9 (Suppl 4): S3–S8CrossRefPubMedGoogle Scholar
  10. 10.
    Bateman RM, Sharpe MD, Ellis CG (2003) Microvascular disfunction in sepsis-hemodynamics, oxygen transport, and nitric oxide. Crit Care 9: 359–373CrossRefGoogle Scholar
  11. 11.
    Bateman RM, Walley KR (2005) Microvascular resuscitation as a therapeutic goal in severe sepsis. Crit Care 9 (Suppl 4): S27–S32CrossRefPubMedGoogle Scholar
  12. 12.
    Spronk PE, Zandstra D, Ince C (2004) Bench-to-bedside review: Sepsis is a disease of the microcirculation. Crit Care 8: 462–468CrossRefPubMedGoogle Scholar
  13. 13.
    Spronk PE, Kanoore-Edul VS, Ince C (2005) Microcirculatory and mitochondrial distress syndrome (MMDS): a new look at sepsis. In: Pinsky M, Payen D (eds) Functional Hemodynamic Monitoring. Springer, Heidelberg, pp 47–67CrossRefGoogle Scholar
  14. 14.
    Cerny V, Turek Z, Parizkova R (2007) Orthogonal polarization spectral imaging. Physiol Res 56: 141–147PubMedGoogle Scholar
  15. 15.
    Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15: 15101–15114CrossRefPubMedGoogle Scholar
  16. 16.
    De Backer D, Creteur J, Preiser JC. Dubois MJ, Vincent L (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104CrossRefPubMedGoogle Scholar
  17. 17.
    Trzeciak S, Dellinger R, Parillo JE, et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and sectic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49: 88–98CrossRefPubMedGoogle Scholar
  18. 18.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825–1831CrossRefPubMedGoogle Scholar
  19. 19.
    Weil MH, Shubin H (1971) Proposed reclassification of shock states with special reference to distributive defects. Adv Exp Med Biol 23: 13–23PubMedGoogle Scholar
  20. 20.
    Almac E, Siegemund M, Demirci C, Ince C (2006) Microcirculatory recruitment maneuvers correct tissue CO2 abnormalities in sepsis. Minerva Anestesiol 72: 509–519Google Scholar
  21. 21.
    Sinaasappel M, van Iterson M, Ince C (1999) Microvascular oxygen pressure in the pig intestine during hemorrhagic shock and resuscitation. J Physiol 514: 245–253CrossRefPubMedGoogle Scholar
  22. 22.
    Ince C, Thio S, van Herson M, et al (1996) Microvascular PO2 measured by Pd-porphine quenching of phosphorescence in a porcine model of slowly developing sepsis. In: Bennett D (Ed) Proceedings of the 9th European Conference on Intensive Care Medicine. Monduzzi, Bologna, pp 133–139Google Scholar
  23. 23.
    Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R (2002) Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis. Am J Physiol Heart Circ Physiol 282: H156–H164PubMedGoogle Scholar
  24. 24.
    Boerma EC, van der Voort PH, Spronk PE, Ince C (2007) Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med 35: 1055–1060CrossRefPubMedGoogle Scholar
  25. 25.
    Boerma C, Kuiper MA. Kingma WP, Egbers PH, Gerritsen RT, Ince C (2008) Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med 34: 1294–1298CrossRefPubMedGoogle Scholar
  26. 26.
    Nakajima Y, Baudry N, Duranteau J, Vicaud E (2001) Microcirculation in intestinal villi. a comparison between hemorrhagic and endotoxin shock. Am J Respir Crit Care Med 164: 1526–1530PubMedGoogle Scholar
  27. 27.
    Fang X, Tang W, Sun S, et al (2006) Comparison of buccal microcirculation between septic and hemorrhagic shock. Crit Care Med 34 (Suppl 12): S447–453Google Scholar
  28. 28.
    Trzeciak S, Cinel I, Dellinger P, et al (2008) Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med 15: 399–413CrossRefPubMedGoogle Scholar
  29. 29.
    Booke M, Hinder F, McGuire R, et al (1996) Nitric oxide synthase inhibition versus norepinephrine for the treatment of hyperdynamic sepsis in sheep. Crit Care Med 24: 835–844CrossRefPubMedGoogle Scholar
  30. 30.
    Broccard A, Hurni JM, Eckert P, et al (2000) Tissue oxygenation and hemodynamic response to NO synthase inhibition in septic shock. Shock 14: 35–40CrossRefPubMedGoogle Scholar
  31. 31.
    Nishida J, McCuskey RS, McDonnell D, et al (1994) Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol 267: G1135–G1141PubMedGoogle Scholar
  32. 32.
    Huang TP, Nishida T, Kamike W, et al (1997) Role of nitric oxide in oxygen transport in rat liver sinusoids during endotoxemia. Hepatology 26: 336–342CrossRefPubMedGoogle Scholar
  33. 33.
    Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32: 21–30CrossRefPubMedGoogle Scholar
  34. 34.
    Spronk PE, Ince C, Gardien MJ, et al (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360: 1395–1396CrossRefPubMedGoogle Scholar
  35. 35.
    Boerma C, Koopmans M, Konijn A (2010) Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: A double-blind randomized placebo controlled trial. Crit Care Med (in press)Google Scholar
  36. 36.
    Buwalda M, Ince C (2002) Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med 28: 1208–1217CrossRefPubMedGoogle Scholar
  37. 37.
    De Backer D, Creteur J, Preiser JC, et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34: 403–408CrossRefPubMedGoogle Scholar
  38. 38.
    Nakajima Y, Baudry N, Duranteau J, Vicaut E (2006) Effects of vasopressin, norepinephrine, and L-arginine on intestinal microcirculation in endotoxemia. Crit Care Med 34: 1752–1757CrossRefPubMedGoogle Scholar
  39. 39.
    Ihanji S, Stirling S, Patel N, Hinds Ch, Pearse R (2009) The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med 37: 1961–1966CrossRefGoogle Scholar
  40. 40.
    Dubin A, Pozo MO, Casabella CA (2009) Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care 13: R92CrossRefPubMedGoogle Scholar
  41. 41.
    Buchele G, Ospina-Tascon G, De Backer D (2007) How microcirculation data have changed my clinical practice. Curr Opin Crit Care 13: 224–331CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • C. Ruiz
    • 1
  • G. Hernandez
    • 1
  • C. Ince
    • 2
  1. 1.Department of Intensive Care Medical FacultyCatholic University of ChileSantiago de ChileChile
  2. 2.Department of Intensive Care Erasmus Medical CenterErasmus University of RotterdamRotterdamNetherlands

Personalised recommendations