Skip to main content

Consequences of Pleural Effusions for Respiratory Mechanics in Ventilated Patients

  • Conference paper
Intensive Care Medicine
  • 2201 Accesses

Abstract

Pleural effusion can be part of the primary condition that precipitates the admission of a patient to an intensive care unit (ICU), or it may develop during the course of an ICU stay [1]. In the former case, such as pneumonia or thoracic trauma, the decision to drain the fluid collection is dictated by the infectious or hemorrhagic nature of the liquid. After admission, the cause usually relates to combinations of factors leading to lung edema, such as generous fluid administration, myocardial depression, increased capillary permeability, and hypoalbuminemia. If there is no suspicion of empyema or hemothorax, the decision to intervene in this scenario is less straightforward. Increasing expertise with ultrasound among intensivists may fuel temptation to drain all pleural fluid accumulations in mechanically ventilated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mattison LE, Coppage L, Alderman, Herlong J0, Sahn SA (1997) Pleural effusions in the medical ICU: prevalence, causes, and clinical implications. Chest 111: 1018–1023

    Article  CAS  PubMed  Google Scholar 

  2. Lai-Fook SJ (2004) Pleural mechanics and fluid exchange. Physiol Rev 84: 385–410

    Article  CAS  PubMed  Google Scholar 

  3. Allen S, Gabel J, Drake R (1989) Left atrial hypertension causes pleural effusion formation in unanesthetized sheep. Am J Physiol 257: H690–H692

    CAS  PubMed  Google Scholar 

  4. Broaddus VC, Wiener-Kronish JP, Staub NC (1990) Clearance of lung edema into the pleural space of volume-loaded anesthetized sheep. J Appl Physiol 68: 2623–2630

    CAS  PubMed  Google Scholar 

  5. Wiener-Kronish JP, Broaddus VC, Albertine KH, Gropper MA, Matthay MA, Staub NC (1988) Relationship of pleural effusions to increased permeability pulmonary edema in anesthetized sheep. J Clin Invest 82: 1422–1429

    Article  CAS  PubMed  Google Scholar 

  6. Wiener-Kronish JP, Matthay MA, Callen PW, et al (1985) Relationship of pleural effusions to pulmonary hemodynamics in patients with congestive heart failure. Am Rev Respir Dis 132: 1253–1256

    CAS  PubMed  Google Scholar 

  7. Wiener-Kronish JP, Goldstein R, Matthay RA, et al (1987) Lack of association of pleural effusion with chronic pulmonary arterial and right atrial hypertension. Chest 92: 967–970

    Article  CAS  PubMed  Google Scholar 

  8. Gillett D, Ford GT, Anthonisen NR (1981) Shape and regional volume in immersed lung lobes. J Appl Physiol 51: 1457–1462

    CAS  PubMed  Google Scholar 

  9. Murphy BG, Plante F, Engel LA (1983) Effect of a hydrostatic pleural pressure gradient on mechanical behavior of lung lobes. J Appl Physiol 55: 453–461

    CAS  PubMed  Google Scholar 

  10. Olson LE, Wilson TA, Rodarte JR (1985) Distortion of submerged dog lung lobes. J Appl Physiol 59: 521–527

    CAS  PubMed  Google Scholar 

  11. Wilson TA (1986) Solid mechanics. In: Fishman AP (ed) Handbook of Physiology. Williams and Wilkins, Baltimore, pp 35–40

    Google Scholar 

  12. Smith CH, Loring SH (1986) Passive mechanical properties of the chest wall. In: Fishman AP (ed) Handbook of Physiology. Williams and Wilkins, Baltimore, pp 429–442

    Google Scholar 

  13. Krell WS, Rodarte JR (1985) Effects of acute pleural effusion on respiratory system mechanics in dogs. J Appl Physiol 59: 1458–1463

    CAS  PubMed  Google Scholar 

  14. Miserocchi G, D’Angelo E, Agostoni E (1972) Topography of pleural surface pressure after pneumo-or hydrothorax. J Appl Physiol 32: 296–303

    CAS  PubMed  Google Scholar 

  15. Lai-Fook SJ, Price DC, Staub NC (1987) Liquid thickness vs. vertical pressure gradient in a model of the pleural space. J Appl Physiol 4: 1747–1754

    Google Scholar 

  16. Dechman G, Sato J, Bates JH (1993) Effect of pleural effusion on respiratory mechanics, and the influence of deep inflation, in dogs. Eur Respir J 6: 219–224

    CAS  PubMed  Google Scholar 

  17. Sousa AS, Moll RJ, Pontes CF, Saldiva PH, Zin WA (1995) Mechanical and morphometrical changes in progressive bilateral pneumothorax and pleural effusion in normal rats. Eur Respir J 8: 99–104

    Article  CAS  PubMed  Google Scholar 

  18. Dechman G, Mishima M, Bates JH (1994) Assessment of acute pleural effusion in dogs by computed tomography. J Appl Physiol 76: 1993–1998

    CAS  PubMed  Google Scholar 

  19. Brown NE, Zamel N, Aberman A (1978) Changes in pulmonary mechanics and gas exchange following thoracocentesis. Chest 74: 540–542

    Article  CAS  PubMed  Google Scholar 

  20. Light RW, Stansbury DW, Brown SE (1986) The relationship between pleural pressures and changes in pulmonary function after therapeutic thoracentesis. Am Rev Respir Dis 133: 658–661

    CAS  PubMed  Google Scholar 

  21. Estenne M, Yernault JC, De Troyer A (1983) Mechanism of relief of dyspnea after thoracocentesis in patients with large pleural effusions. Am J Med 74: 813–819

    Article  CAS  PubMed  Google Scholar 

  22. Gilmartin JJ, Wright AJ, Gibson GJ (1985) Effects of pneumothorax or pleural effusion on pulmonary function. Thorax 40: 60–65

    Article  CAS  PubMed  Google Scholar 

  23. Wang JS, Tseng CH (1995) Changes in pulmonary mechanics and gas exchange after thoracentesis on patients with inversion of a hemidiaphragm secondary to large pleural effusion. Chest 107: 1610–1614

    Article  CAS  PubMed  Google Scholar 

  24. Doelken P, Abreu R, Sahn SA, Mayo PH (2006) Effect of thoracentesis on respiratory mechanics and gas exchange in the patient receiving mechanical ventilation. Chest 130: 1354–1361

    Article  PubMed  Google Scholar 

  25. Nishida O, Arellano R, Cheng DC, DeMajo W, Kavanagh BP (1999) Gas exchange and hemodynamics in experimental pleural effusion. Crit Care Med 27: 583–587

    Article  CAS  PubMed  Google Scholar 

  26. Dantzker DR, Lynch JP, Weg JG (1980) Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 77: 636–642

    Article  CAS  PubMed  Google Scholar 

  27. Hedenstierna G, Sandhagen B (2006) Assessing dead space. A meaningful variable? Minerva Anestesiol 72: 521–528

    CAS  PubMed  Google Scholar 

  28. Karetzky MS, Kothari GA, Fourre JA, Khan AU (1978) Effects of thoracocentesis on arterial oxygen tension. Respiration 36: 96–103

    Article  CAS  PubMed  Google Scholar 

  29. Perpina M, Benlloch E, Marco V, Abad F, Nauffal D (1983) Effect of thoracentesis on pulmonary gas exchange. Thorax 38: 747–750

    Article  CAS  PubMed  Google Scholar 

  30. Agustí AG, Cardús J, Roca J, Grau JM, Xaubet A, Rodriguez-Roisin R (1997) Ventilation-perfusion mismatch in patients with pleural effusion: effects of thoracentesis. Am J Respir Crit Care Med 156: 1205–1209

    PubMed  Google Scholar 

  31. Ahmed SH, Ouzounian SP, Dirusso S, Sullivan T, Savino J, Del Guercio L (2004) Hemodynamic and pulmonary changes after drainage of significant pleural effusions in critically ill, mechanically ventilated surgical patients. J Trauma 57: 1184–1188

    Article  PubMed  Google Scholar 

  32. Talmor M, Hydo L, Gershenwald JG, Barie PS (1998) Beneficial effects of chest tube drainage of pleural effusion in acute respiratory failure refractory to positive end-expiratory pressure ventilation. Surgery 123: 137–143

    CAS  PubMed  Google Scholar 

  33. Roch A, Bojan M, Michelet P, et al (2005) Usefulness of ultrasonography in predicting pleural effusions >500 mL in patients receiving mechanical ventilation. Chest 127: 224–232

    Article  PubMed  Google Scholar 

  34. Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158: 3–11

    CAS  PubMed  Google Scholar 

  35. Pelosi P, Ravagnan I, Giurati G, et al (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91: 1221–1231

    Article  CAS  PubMed  Google Scholar 

  36. Lichtenstein D, Hulot JS, Rabiller A, Tostivint I, Mezière G (1999) Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med 25: 955–958

    Article  CAS  PubMed  Google Scholar 

  37. Vignon P, Chastagner C, Berkane V, et al (2005) Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med 33: 1757–1763

    Article  PubMed  Google Scholar 

  38. Mayo PH, Goltz HR, Tafreshi M, Doelken P (2004) Safety of ultrasound-guided thoracentesis in patients receiving mechanical ventilation. Chest 125: 1059–1062

    Article  PubMed  Google Scholar 

  39. Laws D, Neville E, Duffy J (2003) Pleural Diseases Group, Standards of Care Committee, British Thoracic Society. BTS guidelines for the insertion of a chest drain. Thorax 58 (Suppl 2): 1153–1159

    Google Scholar 

  40. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116: 9S–15S

    Article  CAS  PubMed  Google Scholar 

  41. Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59: 1278–1285

    Article  CAS  PubMed  Google Scholar 

  42. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury Am J Respir Crit Care Med 149: 1327–1334

    CAS  PubMed  Google Scholar 

  43. McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137: 1185–1192

    CAS  PubMed  Google Scholar 

  44. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  CAS  PubMed  Google Scholar 

  45. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    CAS  PubMed  Google Scholar 

  46. Woo SW, Hedley-Whyte J (1972) Macrophage accumulation and pulmonary edema due to thoracotomy and lung over inflation. J Appl Physiol 33: 14–21

    CAS  PubMed  Google Scholar 

  47. D’Angelo E, Pecchiari M, Baraggia P, Saetta M, Balestro E, Milic-Emili J (2002) Low-volume ventilation causes peripheral airway injury and increased airway resistance in normal rabbits. J Appl Physiol 92: 949–956

    PubMed  Google Scholar 

  48. Choi WI, Kwon KY, Kim JM, Quinn DA, Hales CA, Seo JW (2008) Atelectasis induced by thoracotomy causes lung injury during mechanical ventilation in endotoxemic rats. J Korean Med Sci 23: 406–413

    Article  PubMed  Google Scholar 

  49. Graf J (2009) Pleural effusion in the mechanically ventilated patient. Curr Opin Crit Care 15: 10–17

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media Inc.

About this paper

Cite this paper

Graf, J., Formenti, P., Marini, J.J. (2010). Consequences of Pleural Effusions for Respiratory Mechanics in Ventilated Patients. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5562-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5562-3_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5561-6

  • Online ISBN: 978-1-4419-5562-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics