The Microcirculation and Oxidative Stress

  • A. Harrois
  • E. Vicaut
  • J. Duranteau
Conference paper


Microvascular dysfunction appears to play a key role in the pathogenesis of many pathologies, such as hypertension, diabetes, ischemia-reperfusion or sepsis. One of the main players in microcirculatory regulation is the endothelium. Indeed, many studies outline the fundamental role of the endothelium in vascular tone regulation, vascular pro-anticoagulant balance, and vessel wall permeability modulation. Many stimuli are able to induce endothelial dysfunction, including pro-inflammatory cytokines, hypoxia, and oxidative stress. Among the causes of endothelial dysfunction, oxidative stress has been the most extensively investigated. The endothelium represents both a source and a target for reactive oxygen species (ROS) released into the microcirculation. Rather than contribute to oxidative stress, endogenous endothelial systems for ROS generation may have normal physiological signal functions, generating ‘second messengers’ that regulate endothelial cell growth/proliferation, endothelial cell barrier function, vasorelaxation, and vascular remodeling. However, in pathologies such as sepsis or hemorrhagic shock, the imbalance between the production of ROS and their effective removal by non-enzymatic and enzymatic antioxidant systems may induce endothelial dysfunction with alteration of vascular tone, increased cell adhesion properties (leukocyte and platelet adhesion), and increased vascular wall permeability, leading to a pro-coagulant state.


Reactive Oxygen Species Nitric Oxide Reactive Oxygen Species Production NADPH Oxidase Xanthine Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huet O, Obata R, Aubron C, et al (2007) Plasma-induced endothelial oxidative stress is related to the severity of septic shock. Crit Care Med 35: 821–826CrossRefPubMedGoogle Scholar
  2. 2.
    Huet O, Cherreau C, Nicco C, et al (2008) Pivotal role of glutathione depletion in plasmainduced endothelial oxidative stress during sepsis. Crit Care Med 36: 2328–2334CrossRefPubMedGoogle Scholar
  3. 3.
    Feletou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291: H985–1002CrossRefPubMedGoogle Scholar
  4. 4.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552: 335–344CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409: 19–26CrossRefPubMedGoogle Scholar
  6. 6.
    Wolin MS, Ahmad M, Gupte SA (2005) Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 289: L159–173CrossRefPubMedGoogle Scholar
  7. 7.
    Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287: R1014–1030PubMedGoogle Scholar
  8. 8.
    Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP (1992) L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 90: 1248–1253CrossRefPubMedGoogle Scholar
  9. 9.
    Meininger CJ, Kelly KA, Li H, Haynes TE, Wu G (2000) Glucosamine inhibits inducible nitric oxide synthesis. Biochem Biophys Res Commun 279: 234–239CrossRefPubMedGoogle Scholar
  10. 10.
    Engerson TD, McKelvey TG, Rhyne DB, et al (1987) Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J Clin Invest 79: 1564–1570CrossRefPubMedGoogle Scholar
  11. 11.
    Sohn HY, Krotz F, Gloe T, et al (2003) Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine. Cardiovasc Res 58: 638–646CrossRefPubMedGoogle Scholar
  12. 12.
    Granger DN, Benoit IN, Suzuki M, Grisham MB (1989) Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am J Physiol 257: G683–688PubMedGoogle Scholar
  13. 13.
    Baudry N, Laemmel E, Vicaut E (2008) In vivo reactive oxygen species production induced by ischemia in muscle arterioles of mice: involvement of xanthine oxidase and mitochondria. Am J Physiol Heart Circ Physiol 294: H821–828CrossRefPubMedGoogle Scholar
  14. 14.
    Laemmel E, Bonnardel-Phu E, Hou X, Seror J, Vicaut E (2003) Interaction between nitric oxide and prostanoids in arterioles of rat cremaster muscle in vivo. Am J Physiol Heart Circ Physiol 285: H1254–1260PubMedGoogle Scholar
  15. 15.
    Holland JA, Pritchard KA, Pappolla MA, Wolin MS, Rogers NJ, Stemerman MB (1990) Bradykinin induces superoxide anion release from human endothelial cells. J Cell Physiol 143: 21–25CrossRefPubMedGoogle Scholar
  16. 16.
    Gottlieb RA (2003) Cytochrome P450: major player in reperfusion injury. Arch Biochem Biophys 420: 262–267CrossRefPubMedGoogle Scholar
  17. 17.
    Fleming I, Michaelis UR, Bredenkotter D, et al (2001) Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450_2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 88: 44–51CrossRefPubMedGoogle Scholar
  18. 18.
    Cooper D, Stokes KY, Tailor A, Granger DN (2002) Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol 2: 165–180CrossRefPubMedGoogle Scholar
  19. 19.
    Millar TM, Phan V, Tibbles LA (2007) ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic Biol Med 42: 1165–1177CrossRefPubMedGoogle Scholar
  20. 20.
    Chen XL, Zhang Q, Zhao R, Ding X, Tummala PE, Medford RM (2003) Racl and superoxide are required for the expression of cell adhesion molecules induced by tumor necrosis factoralpha in endothelial cells. J Pharmacol Exp Ther 305: 573–580CrossRefPubMedGoogle Scholar
  21. 21.
    Chen XL, Grey JY, Thomas S, et al (2004) Sphingosine kinase-1 mediates TNF-alpha-induced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow. Am J Physiol Heart Circ Physiol 287: H1452–1458CrossRefPubMedGoogle Scholar
  22. 22.
    Russell J, Epstein CJ, Grisham MB, Alexander JS, Yeh KY, Granger DN (2000) Regulation of Eselectin expression in postischemic intestinal microvasculature. Am J Physiol Gastrointest Liver Physiol 278: G878–885PubMedGoogle Scholar
  23. 23.
    Fan J, Frey RS, Rahman A, Malik AB (2002) Role of neutrophil NADPH oxidase in the mechanism of tumor necrosis factor-alpha-induced NF-kappa B activation and intercellular adhesion molecule-1 expression in endothelial cells. J Biol Chem 277: 3404–3411CrossRefPubMedGoogle Scholar
  24. 24.
    Steiner DR, Gonzalez NC, Wood JG (2002) Interaction between reactive oxygen species and nitric oxide in the microvascular response to systemic hypoxia. J Appl Physiol 93: 1411–1418PubMedGoogle Scholar
  25. 25.
    Kubes P, Grisham MB, Barrowman JA, Gaginella T, Granger DN (1991) Leukocyte-induced vascular protein leakage in cat mesentery. Am J Physiol 261: H1872–1879PubMedGoogle Scholar
  26. 26.
    Zarbock A, Ley K (2008) Mechanisms and consequences of neutrophil interaction with the endothelium. Am J Pathol 172: 1–7CrossRefPubMedGoogle Scholar
  27. 27.
    Wolin MS (2009) Reactive oxygen species and the control of vascular function. Am J Physiol Heart Circ Physiol 296: H539–549CrossRefPubMedGoogle Scholar
  28. 28.
    Zou M, Yesilkaya A, Ullrich V (1999) Peroxynitrite inactivates prostacyclin synthase by hemethiolate-catalyzed tyrosine nitration. Drug Metab Rev 31: 343–349CrossRefPubMedGoogle Scholar
  29. 29.
    Quijano C, Hernandez-Saavedra D, Castro L, McCord JM, Freeman BA, Radi R (2001) Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J Biol Chem 276: 11631–11638CrossRefPubMedGoogle Scholar
  30. 30.
    Padmaja S, Squadrito GL, Pryor WA (1998) Inactivation of glutathione peroxidase by peroxynitrite. Arch Biochem Biophys 349: 1–6CrossRefPubMedGoogle Scholar
  31. 31.
    Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10: 1713–1765CrossRefPubMedGoogle Scholar
  32. 32.
    Tanaka C, Kamata H, Takeshita H, Yagisawa H, Hirata H (1997) Redox regulation of lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) gene expression mediated by NF kappa Band AP-1 in human astrocytoma U373 cells. Biochem Biophys Res Commun 232: 568–573CrossRefPubMedGoogle Scholar
  33. 33.
    Ishibashi N, Prokopenko O, Reuhl KR, Mirochnitchenko O (2002) Inflammatory response and glutathione peroxidase in a model of stroke. J Immunol 168: 1926–1933PubMedGoogle Scholar
  34. 34.
    Gu W, Weihrauch D, Tanaka K, et al (2003) Reactive oxygen species are critical mediators of coronary collateral development in a canine model. Am J Physiol Heart Circ Physiol 285: H1582–1589PubMedGoogle Scholar
  35. 35.
    Bayir H, Kagan VE (2008) Bench-to-bedside review: Mitochondrial injury, oxidative stress and apoptosis—there is nothing more practical than a good theory. Crit Care 12: 206CrossRefPubMedGoogle Scholar
  36. 36.
    Levraut J, Iwase H, Shao ZH, Vanden Hoek TL, Schumacker PT (2003) Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol 284: H549–558PubMedGoogle Scholar
  37. 37.
    Zimmerman BJ, Holt JW, Paulson JC, et al (1994) Molecular determinants of lipid mediatorinduced leukocyte adherence and emigration in rat mesenteric venules. Am J Physiol 266: H847–853PubMedGoogle Scholar
  38. 38.
    Yilmaz G, Granger DN (2010) Leukocyte recruitment and ischemic brain injury. Neuromolecular Med (in press)Google Scholar
  39. 39.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104CrossRefPubMedGoogle Scholar
  40. 40.
    Matsuda N, Hattori Y, Zhang XH, Fukui H, Kemmotsu O, Gando S (2003) Contractions to histamine in pulmonary and mesenteric arteries from endotoxemic rabbits: modulation by vas cular expressions of inducible nitric-oxide synthase and histamine HI-receptors. J Pharmacol Exp Ther 307: 175–181CrossRefPubMedGoogle Scholar
  41. 41.
    Krejci V, Hiltebrand LB, Erni D, Sigurdsson GH (2003) Endothelin receptor antagonist bosentan improves microcirculatory blood flow in splanchnic organs in septic shock. Crit Care Med 31: 203–210CrossRefPubMedGoogle Scholar
  42. 42.
    Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360: 1395–1396CrossRefPubMedGoogle Scholar
  43. 43.
    Boerma EC, Koopmans M, Konijn A, et al (2010) Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: A double-blind randomized placebo controlled trial. Crit Care Med 38: 93–100CrossRefPubMedGoogle Scholar
  44. 44.
    Tiruppathi C, Naqvi T, Sandoval R, Mehta D, Malik AB (2001) Synergistic effects of tumor necrosis factor-alpha and thrombin in increasing endothelial permeability. Am J Physiol Lung Cell Mol Physiol 281: L958–968PubMedGoogle Scholar
  45. 45.
    Abdulnour RE, Peng X, Finigan JH, et al (2006) Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways. Am J Physiol Lung Cell Mol Physiol 291: L345–353CrossRefPubMedGoogle Scholar
  46. 46.
    Ochoa L, Waypa G, Mahoney JR Jr, Rodriguez L, Minnear FL (1997) Contrasting effects of hypochlorous acid and hydrogen peroxide on endothelial permeability: prevention with cAMP drugs. Am J Respir Crit Care Med 156: 1247–1255PubMedGoogle Scholar
  47. 47.
    Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223CrossRefPubMedGoogle Scholar
  48. 48.
    Zingarelli B, Day BJ, Crapo JD, Salzman AL, Szabo C (1997) The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br J Pharmacol 120: 259–267CrossRefPubMedGoogle Scholar
  49. 49.
    Boczkowski J, Lisdero CL, Lanone S, et al (1999) Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. FASEB J 13: 1637–1646PubMedGoogle Scholar
  50. 50.
    Dahm CC, Moore K, Murphy MP (2006) Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J Biol Chem 281: 10056–10065CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • A. Harrois
    • 1
  • E. Vicaut
    • 2
  • J. Duranteau
    • 1
  1. 1.Department of Anesthesia and Surgical Intensive CareCHU de BicetreLe Kremlin BicêtreFrance
  2. 2.Laboratoire d'Etude de la MicrocirculationFaculté de Médecine LariboisiéreParisFrance

Personalised recommendations