Skip to main content

The Calcium-Sensing Receptor: Physiology and Pathophysiology

  • Chapter
  • First Online:
Diseases of the Parathyroid Glands

Abstract

The complex control of calcium by the calcium-sensing receptor is the substance of this chapter. It describes the role of this critical receptor at the parathyroid glands and kidneys and focuses on the molecular abnormalities of the receptor and its role in the causation of hypocalcemic and hypercalcemic disorders. It describes how activating and inactivating mutations of the receptor lead to the problems such as familial hypocalciuric hypercalcemia, neonatal severe primary hyperparathyroidism, and other clinical states. It notes the use of genetic analysis of the calcium sensing receptor gene in the diagnosis of these complex problems and provides some therapeutic options for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239–97.

    PubMed  CAS  Google Scholar 

  2. Silver J, Sela SB, Naveh-Many T. Regulation of parathyroid cell proliferation. Curr Opin Nephrol Hypertens. 1997;6(4):321–6.

    PubMed  CAS  Google Scholar 

  3. Brown EM. Editorial: mutant extracellular calcium-sensing receptors and severity of disease. J Clin Endocrinol Metab. 2005;90(2):1246–8.

    PubMed  CAS  Google Scholar 

  4. Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993; 366(6455):575–80.

    PubMed  CAS  Google Scholar 

  5. Garrett JE, Capuano IV, Hammerland LG, et al. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem. 1995;270(21):12919–25.

    PubMed  CAS  Google Scholar 

  6. Wellendorph P, Brauner-Osborne H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene. 2004;335:37–46.

    PubMed  CAS  Google Scholar 

  7. Hu J, Spiegel AM. Structure and function of the human calcium-sensing receptor: insights from natural and engineered mutations and allosteric modulators. J Cell Mol Med. 2007;11(5):908–22.

    PubMed  CAS  Google Scholar 

  8. Ray K, Hauschild BC, Steinbach PJ, Goldsmith PK, Hauache O, Spiegel AM. Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca(2+) receptor critical for dimerization. Implications for function of monomeric Ca(2+) receptor. J Biol Chem. 1999;274(39):27642–50.

    PubMed  CAS  Google Scholar 

  9. Wellcome RD, Lecture P. Cell surface, ion-sensing receptors. Exp Physiol. 2002;87(4):403–11.

    Google Scholar 

  10. Conigrave AD, Quinn SJ, Brown EM. l-Amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci USA. 2000;97(9):4814–9.

    PubMed  CAS  Google Scholar 

  11. Mun HC, Culverston EL, Franks AH, Collyer CA, Clifton-Bligh RJ, Conigrave AD. A double mutation in the extracellular Ca2+-sensing receptor’s venus flytrap domain that selectively disables L-amino acid sensing. J Biol Chem. 2005;280(32):29067–72.

    PubMed  CAS  Google Scholar 

  12. Hu J, Spiegel AM. Naturally occurring mutations of the extracellular Ca2+-sensing receptor: implications for its structure and function. Trends Endocrinol Metab. 2003;14(6):282–8.

    PubMed  CAS  Google Scholar 

  13. Brown AJ, Zhong M, Finch J, et al. Rat calcium-sensing receptor is regulated by vitamin D but not by calcium. Am J Physiol. 1996;270(3 Pt 2):F454–60.

    PubMed  CAS  Google Scholar 

  14. Yarden N, Lavelin I, Genina O, et al. Expression of calcium-sensing receptor gene by avian parathyroid gland in vivo: relationship to plasma calcium. Gen Comp Endocrinol. 2000;117(2):173–81.

    PubMed  CAS  Google Scholar 

  15. Carrillo-Lopez N, Alvarez-Hernandez D, Gonzalez-Suarez I, et al. Simultaneous changes in the calcium-sensing receptor and the vitamin D receptor under the influence of calcium and calcitriol. Nephrol Dial Transplant. 2008;23(11):3479–84.

    PubMed  CAS  Google Scholar 

  16. Ritter CS, Pande S, Krits I, Slatopolsky E, Brown AJ. Destabilization of parathyroid hormone mRNA by extracellular Ca2+ and the calcimimetic R-568 in parathyroid cells: role of cytosolic Ca and requirement for gene transcription. J Mol Endocrinol. 2008;40(1):13–21.

    PubMed  CAS  Google Scholar 

  17. Farnebo F, Enberg U, Grimelius L, et al. Tumor-specific decreased expression of calcium sensing receptor messenger ribonucleic acid in sporadic primary hyperparathyroidism. J Clin Endocrinol Metab. 1997;82(10):3481–6.

    PubMed  CAS  Google Scholar 

  18. Mun HC, Brennan SC, Delbridge L, Wilkinson M, Brown EM, Conigrave AD. Adenomatous human parathyroid cells exhibit impaired sensitivity to l-amino acids. J Clin Endocrinol Metab. 2009; 94(9):3567–74.

    PubMed  CAS  Google Scholar 

  19. Freichel M, Zink-Lorenz A, Holloschi A, Hafner M, Flockerzi V, Raue F. Expression of a calcium-sensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion. Endocrinology. 1996;137(9):3842–8.

    PubMed  CAS  Google Scholar 

  20. Ba J, Brown D, Friedman PA. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol Renal Physiol. 2003;285(6):F1233–43.

    PubMed  CAS  Google Scholar 

  21. Motoyama HI, Friedman PA. Calcium-sensing receptor regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. Am J Physiol Renal Physiol. 2002;283(3):F399–406.

    PubMed  CAS  Google Scholar 

  22. Sands JM, Naruse M, Baum M, et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest. 1997;99(6):1399–405.

    PubMed  CAS  Google Scholar 

  23. Theman TA, Collins MT. The role of the calcium-sensing receptor in bone biology and pathophysiology. Curr Pharm Biotechnol. 2009;10(3):289–301.

    PubMed  CAS  Google Scholar 

  24. Dvorak MM, Siddiqua A, Ward DT, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA. 2004;101(14):5140–5.

    PubMed  CAS  Google Scholar 

  25. Garner SC, Pi M, Tu Q, Quarles LD. Rickets in cation-sensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology. 2001;142(9): 3996–4005.

    PubMed  CAS  Google Scholar 

  26. Thakker RV. Diseases associated with the extracellular calcium-sensing receptor. Cell Calcium. 2004;35(3):275–82.

    PubMed  CAS  Google Scholar 

  27. Pearce SH. Clinical disorders of extracellular calcium-sensing and the molecular biology of the ­calcium-sensing receptor. Ann Med. 2002;34(3):201–6.

    PubMed  CAS  Google Scholar 

  28. Hinnie J, Bell E, McKillop E, Gallacher S. The prevalence of familial hypocalciuric hypercalcemia. Calcif Tissue Int. 2001;68(4):216–8.

    PubMed  CAS  Google Scholar 

  29. Boonstra CE, Jackson CE. Serum calcium survey for hyperparathyroidism: results in 50,000 clinic patients. Am J Clin Pathol. 1971;55(5):523–6.

    PubMed  CAS  Google Scholar 

  30. Pearce SH, Bai M, Quinn SJ, Kifor O, Brown EM, Thakker RV. Functional characterization of calcium-sensing receptor mutations expressed in human embryonic kidney cells. J Clin Invest. 1996;98(8): 1860–6.

    PubMed  CAS  Google Scholar 

  31. Bai M, Janicic N, Trivedi S, et al. Markedly reduced activity of mutant calcium-sensing receptor with an inserted Alu element from a kindred with familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. J Clin Invest. 1997;99(8): 1917–25.

    PubMed  CAS  Google Scholar 

  32. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75(7):1297–303.

    PubMed  CAS  Google Scholar 

  33. Aida K, Koishi S, Tawata M, Onaya T. Molecular cloning of a putative Ca(2+)-sensing receptor cDNA from human kidney. Biochem Biophys Res Commun. 1995;214(2):524–9.

    PubMed  CAS  Google Scholar 

  34. Chou YH, Pollak MR, Brandi ML, et al. Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet. 1995;56(5):1075–9.

    PubMed  CAS  Google Scholar 

  35. Pearce SH, Trump D, Wooding C, et al. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest. 1995;96(6):2683–92.

    PubMed  CAS  Google Scholar 

  36. Pollak MR, Chou YH, Marx SJ, et al. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J Clin Invest. 1994;93(3):1108–12.

    PubMed  CAS  Google Scholar 

  37. Wystrychowski A, Pidasheva S, Canaff L, et al. Functional characterization of calcium-sensing receptor codon 227 mutations presenting as either familial (benign) hypocalciuric hypercalcemia or neonatal hyperparathyroidism. J Clin Endocrinol Metab. 2005;90(2):864–70.

    PubMed  CAS  Google Scholar 

  38. Heath 3rd H, Jackson CE, Otterud B, Leppert MF. Genetic linkage analysis in familial benign (hypocalciuric) hypercalcemia: evidence for locus heterogeneity. Am J Hum Genet. 1993;53(1):193–200.

    PubMed  Google Scholar 

  39. Lloyd SE, Pannett AA, Dixon PH, Whyte MP, Thakker RV. Localization of familial benign hypercalcemia, Oklahoma variant (FBHOk), to chro­mosome 19q13. Am J Hum Genet. 1999;64(1): 189–95.

    PubMed  CAS  Google Scholar 

  40. Marx SJ, Attie MF, Levine MA, Spiegel AM, Downs Jr RW, Lasker RD. The hypocalciuric or benign ­variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine (Baltimore). 1981;60(6):397–412.

    CAS  Google Scholar 

  41. Law Jr WM, Heath III H. Familial benign hypercalcemia (hypocalciuric hypercalcemia). Clinical and pathogenetic studies in 21 families. Ann Intern Med. 1985;102(4):511–9.

    PubMed  Google Scholar 

  42. Heath III H. Familial benign (hypocalciuric) hypercalcemia. A troublesome mimic of mild primary hyperparathyroidism. Endocrinol Metab Clin North Am. 1989;18(3):723–40.

    PubMed  Google Scholar 

  43. Carling T, Szabo E, Bai M, et al. Familial hypercalcemia and hypercalciuria caused by a novel mutation in the cytoplasmic tail of the calcium receptor. J Clin Endocrinol Metab. 2000;85(5):2042–7.

    PubMed  CAS  Google Scholar 

  44. Nissen PH, Christensen SE, Heickendorff L, Brixen K, Mosekilde L. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population. J Clin Endocrinol Metab. 2007; 92(11):4373–9.

    PubMed  CAS  Google Scholar 

  45. Fuleihan Gel H. Familial benign hypocalciuric hypercalcemia. J Bone Miner Res. 2002;17 Suppl 2:N51–6.

    Google Scholar 

  46. Christensen SE, Nissen PH, Vestergaard P, Heickendorff L, Brixen K, Mosekilde L. Discriminative power of three indices of renal calcium excretion for the distinction between familial hypocalciuric hypercalcaemia and primary hyperparathyroidism: a follow-up study on methods. Clin Endocrinol (Oxf). 2008;69(5):713–20.

    CAS  Google Scholar 

  47. Ward BK, Magno AL, Blitvich BJ, et al. Novel mutations in the calcium-sensing receptor gene associated with biochemical and functional differences in familial hypocalciuric hypercalcaemia. Clin Endocrinol (Oxf). 2006;64(5):580–7.

    CAS  Google Scholar 

  48. Timmers HJ, Karperien M, Hamdy NA, de Boer H, Hermus AR. Normalization of serum calcium by cinacalcet in a patient with hypercalcaemia due to a de novo inactivating mutation of the calcium-sensing receptor. J Intern Med. 2006;260(2):177–82.

    PubMed  CAS  Google Scholar 

  49. Rus R, Haag C, Bumke-Vogt C, et al. Novel inactivating mutations of the calcium-sensing receptor: the calcimimetic NPS R-568 improves signal transduction of mutant receptors. J Clin Endocrinol Metab. 2008;93(12):4797–803.

    PubMed  CAS  Google Scholar 

  50. Kobayashi M, Tanaka H, Tsuzuki K, et al. Two novel missense mutations in calcium-sensing receptor gene associated with neonatal severe hyperparathyroidism. J Clin Endocrinol Metab. 1997;82(8): 2716–9.

    PubMed  CAS  Google Scholar 

  51. Cole DE, Janicic N, Salisbury SR, Hendy GN. Neonatal severe hyperparathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating Alu insertion mutation of the calcium-sensing receptor gene. Am J Med Genet. 1997;71(2):202–10.

    PubMed  CAS  Google Scholar 

  52. Bai M, Pearce SH, Kifor O, et al. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J Clin Invest. 1997;99(1):88–96.

    PubMed  CAS  Google Scholar 

  53. Toke J, Czirjak G, Patocs A, et al. Neonatal severe hyperparathyroidism associated with a novel de novo heterozygous R551K inactivating mutation and a heterozygous A986S polymorphism of the calcium-sensing receptor gene. Clin Endocrinol (Oxf). 2007;67(3):385–92.

    CAS  Google Scholar 

  54. Lietman SA, Tenenbaum-Rakover Y, Jap TS, et al. A novel loss-of-function mutation, Gln459Arg, of the calcium-sensing receptor gene associated with apparent autosomal recessive inheritance of familial hypocalciuric hypercalcemia. J Clin Endocrinol Metab. 2009;94(11):4372–9.

    PubMed  CAS  Google Scholar 

  55. Kifor O, Moore Jr FD, Delaney M, et al. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J Clin Endocrinol Metab. 2003;88(1):60–72.

    PubMed  CAS  Google Scholar 

  56. Pallais JC, Kifor O, Chen YB, Slovik D, Brown EM. Acquired hypocalciuric hypercalcemia due to autoantibodies against the calcium-sensing receptor. N Engl J Med. 2004;351(4):362–9.

    PubMed  CAS  Google Scholar 

  57. Kemp EH, Gavalas NG, Krohn KJ, Brown EM, Watson PF, Weetman AP. Activating autoantibodies against the calcium-sensing receptor detected in two patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab. 2009;94(12): 4749–56.

    PubMed  CAS  Google Scholar 

  58. Pearce SH, Williamson C, Kifor O, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335(15):1115–22.

    PubMed  CAS  Google Scholar 

  59. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet. 1994;8(3):303–7.

    PubMed  CAS  Google Scholar 

  60. De Luca F, Ray K, Mancilla EE, et al. Sporadic hypoparathyroidism caused by de Novo gain-of-function mutations of the Ca(2+)-sensing receptor. J Clin Endocrinol Metab. 1997;82(8):2710–5.

    PubMed  Google Scholar 

  61. Watanabe T, Bai M, Lane CR, et al. Familial hypoparathyroidism: identification of a novel gain of function mutation in transmembrane domain 5 of the calcium-sensing receptor. J Clin Endocrinol Metab. 1998;83(7):2497–502.

    PubMed  CAS  Google Scholar 

  62. Baron J, Winer KK, Yanovski JA, et al. Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum Mol Genet. 1996;5(5):601–6.

    PubMed  CAS  Google Scholar 

  63. Theman TA, Collins MT, Dempster DW, et al. PTH(1-34) replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation. J Bone Miner Res. 2009;24(5):964–73.

    PubMed  CAS  Google Scholar 

  64. Konrad M, Weber S. Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol. 2003;14(1):249–60.

    PubMed  Google Scholar 

  65. Watanabe S, Fukumoto S, Chang H, et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet. 2002; 360(9334):692–4.

    PubMed  CAS  Google Scholar 

  66. Gavalas NG, Kemp EH, Krohn KJ, Brown EM, Watson PF, Weetman AP. The calcium-sensing receptor is a target of autoantibodies in patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab. 2007;92(6):2107–14.

    PubMed  CAS  Google Scholar 

  67. Li Y, Song YH, Rais N, et al. Autoantibodies to the extracellular domain of the calcium sensing receptor in patients with acquired hypoparathyroidism. J Clin Invest. 1996;97(4):910–4.

    PubMed  CAS  Google Scholar 

  68. Kifor O, McElduff A, LeBoff MS, et al. Activating antibodies to the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J Clin Endocrinol Metab. 2004;89(2):548–56.

    PubMed  CAS  Google Scholar 

  69. Kapur K, Johnson T, Beckmann ND, et al. Genome-wide meta-analysis for serum calcium identifies significantly associated SNPs near the calcium-sensing receptor (CASR) gene. PLoS Genet. 2010;6(7): e1001035.

    PubMed  Google Scholar 

  70. Cole DE, Peltekova VD, Rubin LA, et al. A986S polymorphism of the calcium-sensing receptor and circulating calcium concentrations. Lancet. 1999;353(9147):112–5.

    PubMed  CAS  Google Scholar 

  71. Cole DE, Vieth R, Trang HM, Wong BY, Hendy GN, Rubin LA. Association between total serum calcium and the A986S polymorphism of the calcium-sensing receptor gene. Mol Genet Metab. 2001;72(2): 168–74.

    PubMed  CAS  Google Scholar 

  72. Scillitani A, Guarnieri V, De Geronimo S, et al. Blood ionized calcium is associated with clustered polymorphisms in the carboxyl-terminal tail of the calcium-sensing receptor. J Clin Endocrinol Metab. 2004;89(11):5634–8.

    PubMed  CAS  Google Scholar 

  73. Young R, Wu F, Van de Water N, Ames R, Gamble G, Reid IR. Calcium sensing receptor gene A986S polymorphism and responsiveness to calcium supplementation in postmenopausal women. J Clin Endocrinol Metab. 2003;88(2):697–700.

    PubMed  CAS  Google Scholar 

  74. Takacs I, Speer G, Bajnok E, et al. Lack of association between calcium-sensing receptor gene “A986S” polymorphism and bone mineral density in Hungarian postmenopausal women. Bone. 2002; 30(6):849–52.

    PubMed  CAS  Google Scholar 

  75. Yamauchi M, Sugimoto T, Yamaguchi T, et al. Association of polymorphic alleles of the calcium-sensing receptor gene with the clinical severity of primary hyperparathyroidism. Clin Endocrinol (Oxf). 2001;55(3):373–9.

    CAS  Google Scholar 

  76. Yano S, Sugimoto T, Kanzawa M, et al. Association of polymorphic alleles of the calcium-sensing receptor gene with parathyroid hormone secretion in hemodialysis patients. Nephron. 2000;85(4): 317–23.

    PubMed  CAS  Google Scholar 

  77. Vezzoli G, Tanini A, Ferrucci L, et al. Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J Am Soc Nephrol. 2002;13(10):2517–23.

    PubMed  CAS  Google Scholar 

  78. Scillitani A, Guarnieri V, Battista C, et al. Primary hyperparathyroidism and the presence of kidney stones are associated with different haplotypes of the calcium-sensing receptor. J Clin Endocrinol Metab. 2007;92(1):277–83.

    PubMed  CAS  Google Scholar 

  79. Nemeth EF, Steffey ME, Hammerland LG, et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA. 1998;95(7):4040–5.

    PubMed  CAS  Google Scholar 

  80. Block GA, Martin KJ, de Francisco AL, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350(15):1516–25.

    PubMed  CAS  Google Scholar 

  81. Silverberg SJ, Bone 3rd HG, Marriott TB, et al. Short-term inhibition of parathyroid hormone secretion by a calcium-receptor agonist in patients with primary hyperparathyroidism. N Engl J Med. 1997;337(21):1506–10.

    PubMed  CAS  Google Scholar 

  82. Silverberg SJ, Rubin MR, Faiman C, et al. Cinacalcet hydrochloride reduces the serum calcium concentration in inoperable parathyroid carcinoma. J Clin Endocrinol Metab. 2007;92(10):3803–8.

    PubMed  CAS  Google Scholar 

  83. Peacock M, Bilezikian JP, Klassen PS, Guo MD, Turner SA, Shoback D. Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2005;90(1):135–41.

    PubMed  CAS  Google Scholar 

  84. Letz S, Rus R, Haag C, et al. Novel activating mutations of the calcium-sensing receptor: the calcilytic NPS-2143 mitigates excessive signal transduction of mutant receptors. J Clin Endocrinol Metab. 2010;95(10):E229–33.

    PubMed  CAS  Google Scholar 

  85. Christie P, Curley A, Nesbit MA, Harding B, Bowl M, Thakker R. Characterisation of 25 calcium-sensing receptor mutations in disorders of calcium homeostasis. Paper presented at the Society for Endocrinology BES 2007. UK: Birmingham.

    Google Scholar 

  86. de Andrade SC, Kohara SK, D’Souza-Li L. Novel mutation of the calcium sensing receptor gene in familial hypocalciuric hypercalcaemia and neonatal severe hyperparathyroidism. Clin Endocrinol (Oxf). 2006;65(6):826–7.

    Google Scholar 

  87. D’Souza-Li L, Yang B, Canaff L, et al. Identification and functional characterization of novel calcium-sensing receptor mutations in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia. J Clin Endocrinol Metab. 2002;87(3):1309–18.

    PubMed  Google Scholar 

  88. Pidasheva S, Canaff L, Simonds WF, Marx SJ, Hendy GN. Impaired cotranslational processing of the calcium-sensing receptor due to signal peptide missense mutations in familial hypocalciuric hypercalcemia. Hum Mol Genet. 2005;14(12):1679–90.

    PubMed  CAS  Google Scholar 

  89. Miyashiro K, Kunii I, Manna TD, et al. Severe hypercalcemia in a 9-year-old Brazilian girl due to a novel inactivating mutation of the calcium-sensing receptor. J Clin Endocrinol Metab. 2004;89(12): 5936–41.

    PubMed  CAS  Google Scholar 

  90. Chikatsu N, Fukumoto S, Suzawa M, et al. An adult patient with severe hypercalcaemia and hypocalciuria due to a novel homozygous inactivating mutation of calcium-sensing receptor. Clin Endocrinol (Oxf). 1999;50(4):537–43.

    CAS  Google Scholar 

  91. Aida K, Koishi S, Inoue M, Nakazato M, Tawata M, Onaya T. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca(2+)-sensing receptor gene. J Clin Endocrinol Metab. 1995;80(9):2594–8.

    PubMed  CAS  Google Scholar 

  92. Vargas-Poussou R, Huang C, Hulin P, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002;13(9):2259–66.

    PubMed  CAS  Google Scholar 

  93. Heath 3rd H, Odelberg S, Jackson CE, et al. Clustered inactivating mutations and benign polymorphisms of the calcium receptor gene in familial benign hypocalciuric hypercalcemia suggest receptor functional domains. J Clin Endocrinol Metab. 1996;81(4): 1312–7.

    PubMed  CAS  Google Scholar 

  94. Waller S, Kurzawinski T, Spitz L, et al. Neonatal severe hyperparathyroidism: genotype/phenotype correlation and the use of pamidronate as rescue therapy. Eur J Pediatr. 2004;163(10):589–94.

    PubMed  CAS  Google Scholar 

  95. Pidasheva S, Grant M, Canaff L, Ercan O, Kumar U, Hendy GN. Calcium-sensing receptor dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of CASR mutants retained intracellularly. Hum Mol Genet. 2006;15(14): 2200–9.

    PubMed  CAS  Google Scholar 

  96. Ward BK, Magno AL, Davis EA, et al. Functional deletion of the calcium-sensing receptor in a case of neonatal severe hyperparathyroidism. J Clin Endocrinol Metab. 2004;89(8):3721–30.

    PubMed  CAS  Google Scholar 

  97. Warner J, Epstein M, Sweet A, et al. Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. J Med Genet. 2004;41(3):155–60.

    PubMed  CAS  Google Scholar 

  98. Suzuki M, Aso T, Sato T, et al. A case of gain-of-function mutation in calcium-sensing receptor: supplemental hydration is required for renal protection. Clin Nephrol. 2005;63(6):481–6.

    PubMed  CAS  Google Scholar 

  99. Soie YL, Karperien M, Bakker B, Breuning MH, Hendy GN, Papapoulos SE. Familial benign hypercalcemia (FBH) with age-associated hypercalciuria and a missense mutation in the calcium-sensing receptor (CaSR) expands the spectrum of the syndrome towards primary hyperparathyroidism. Paper presented at: American Society for Bone and Mineral Research, 21st Annual Meeting1999, St. Louis, MI, USA.

    Google Scholar 

  100. Simonds WF, James-Newton LA, Agarwal SK, et al. Familial isolated hyperparathyroidism: clinical and genetic characteristics of 36 kindreds. Medicine (Baltimore). 2002;81(1):1–26.

    Google Scholar 

  101. Rajguru M, Bedu A, Magdelaine C, Bai M, Aujuard Y, Lienhardt A. Neonatal primary hyperparathyroidism due to a new calcium sensing receptor mutation. Pediatr Res. 2001;49:P3–294.

    Google Scholar 

  102. Murugaian EE, Premkumar RM, Radhakrishnan L, Vallath B. Novel mutations in the calcium sensing receptor gene in tropical chronic pancreatitis in India. Scand J Gastroenterol. 2008;43(1):117–21.

    PubMed  CAS  Google Scholar 

  103. Cetani F, Lemmi M, Cervia D, et al. Identification and functional characterization of loss-of-function mutations of the calcium-sensing receptor in four Italian kindreds with familial hypocalciuric hypercalcemia. Eur J Endocrinol. 2009;160(3): 481–9.

    PubMed  CAS  Google Scholar 

  104. D’Souza-Li L, Canaff L, Janicic N, Cole DE, Hendy GN. An acceptor splice site mutation in the calcium-sensing receptor (CASR) gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Hum Mutat. 2001;18(5): 411–21.

    PubMed  Google Scholar 

  105. Ward BK, Cameron FJ, Magno AL, McDonnell CM, Stuckey BG, Ratajczak T. A novel homozygous deletion in the calcium-sensing receptor ligand-binding domain associated with neonatal severe hyperparathyroidism. J Pediatr Endocrinol Metab. 2006;19(1):93–100.

    PubMed  CAS  Google Scholar 

  106. Cole DE, Yun FH, Wong BY, et al. Calcium-sensing receptor mutations and denaturing high performance liquid chromatography. J Mol Endocrinol. 2009; 42(4):331–9.

    PubMed  CAS  Google Scholar 

  107. Hinnie J, Vass JK, Rolfe E, et al. Two novel ­mutations causing familial benign hypocalciuric hypercalcaemia in three Scottish families. Scott Med J. 2009;54(4):11–4.

    PubMed  CAS  Google Scholar 

  108. Felderbauer P, Hoffmann P, Einwachter H, et al. A novel mutation of the calcium sensing receptor gene is associated with chronic pancreatitis in a family with heterozygous SPINK1 mutations. BMC Gastroenterol. 2003;3:34.

    PubMed  Google Scholar 

  109. Ward BK, Stuckey BG, Gutteridge DH, Laing NG, Pullan PT, Ratajczak T. A novel mutation (L174R) in the Ca2+-sensing receptor gene associated with familial hypocalciuric hypercalcemia. Hum Mutat. 1997;10(3):233–5.

    PubMed  CAS  Google Scholar 

  110. Pearce SH, Wooding C, Davies M, Tollefsen SE, Whyte MP, Thakker RV. Calcium-sensing receptor mutations in familial hypocalciuric hypercalcaemia with recurrent pancreatitis. Clin Endocrinol (Oxf). 1996;45(6):675–80.

    CAS  Google Scholar 

  111. Zajickova K, Vrbikova J, Canaff L, Pawelek PD, Goltzman D, Hendy GN. Identification and functional characterization of a novel mutation in the calcium-sensing receptor gene in familial hypocalciuric hypercalcemia: modulation of clinical severity by vitamin D status. J Clin Endocrinol Metab. 2007;92(7):2616–23.

    PubMed  CAS  Google Scholar 

  112. Webb EA, Allgrove J, Kurzawinski TR, Dattani MT. Did cinacalcet help in the management of neonatal severe hyperparathyroidism secondary to a novel homozygous inactivating mutation of the calcium-sensing receptor? Paper presented at: 5th International Conference on Children’s Bone Health2009, Cambridge, UK.

    Google Scholar 

  113. Demedts M, Lissens W, Wuyts W, Matthijs G, Thomeer M, Bouillon R. A new missense mutation in the CASR gene in familial interstitial lung disease with hypocalciuric hypercalcemia and defective granulocyte function. Am J Respir Crit Care Med. 2008;177(5):558–9.

    PubMed  Google Scholar 

  114. Marcocci C, Borsari S, Pardi E, et al. Familial hypocalciuric hypercalcemia in a woman with metastatic breast cancer: a case report of mistaken identity. J Clin Endocrinol Metab. 2003;88(11):5132–6.

    PubMed  CAS  Google Scholar 

  115. Cetani F, Pardi E, Borsari S, et al. Two Italian kindreds with familial hypocalciuric hypercalcaemia caused by loss-of-function mutations in the calcium-sensing receptor (CaR) gene: functional characterization of a novel CaR missense mutation. Clin Endocrinol (Oxf). 2003;58(2):199–206.

    CAS  Google Scholar 

  116. D’Souza-Li L, Silva MBD, Grande MT, Carvalho D, Guerra G. Two novel mutations in the calcium-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Paper presented at: American Society for Bone and Mineral Research. 24th Annual Meeting 2002, San Antonio, Texas, USA.

    Google Scholar 

  117. Guarnieri V, Canaff L, Yun FH, et al. Calcium-sensing receptor (CASR) mutations in hypercalcemic states: studies from a single endocrine clinic over three years. J Clin Endocrinol Metab. 2010;95(4):1819–29.

    PubMed  CAS  Google Scholar 

  118. Ono Y, Oda N, Ishihara S, et al. Insulinoma cell ­calcium-sensing receptor influences insulin secretion in a case with concurrent familial hypocalciuric hypercalcemia and malignant metastatic insulinoma. Eur J Endocrinol. 2008;159(1):81–6.

    PubMed  CAS  Google Scholar 

  119. Dong Q, Cheng Z, Chang W, et al. Naturally-occurring mutation in the calcium-sensing receptor (CaSR) reveals the significance of extracellular domain loop III for receptor and signal transduction. Paper presented at the Endocrine Society’s 91st Annual Meeting, ENDO 2009, Washington, DC.

    Google Scholar 

  120. Vigouroux C, Bourut C, Guerci B, et al. A new missense mutation in the calcium-sensing receptor in familial benign hypercalcaemia associated with partial lipoatrophy and insulin resistant diabetes. Clin Endocrinol (Oxf). 2000;53(3):393–8.

    CAS  Google Scholar 

  121. Leech C, Lohse P, Stanojevic V, Lechner A, Goke B, Spitzweg C. Identification of a novel inactivating R465Q mutation of the calcium-sensing receptor. Biochem Biophys Res Commun. 2006;342(3): 996–1002.

    PubMed  CAS  Google Scholar 

  122. Schwarz P, Larsen NE, Lonborg Friis IM, Lillquist K, Brown EM, Gammeltoft S. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism associated with mutations in the human Ca2+-sensing receptor gene in three Danish families. Scand J Clin Lab Invest. 2000;60(3):221–7.

    PubMed  CAS  Google Scholar 

  123. Nakayama T, Minato M, Nakagawa M, et al. A novel mutation in Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia. Endocrine. 2001;15(3):277–82.

    PubMed  CAS  Google Scholar 

  124. Burski K, Torjussen B, Paulsen AQ, Boman H, Bollerslev J. Parathyroid adenoma in a subject with familial hypocalciuric hypercalcemia: coincidence or causality? J Clin Endocrinol Metab. 2002;87(3):1015–6.

    PubMed  CAS  Google Scholar 

  125. Nyweide K, Feldman KW, Gunther DF, Done S, Lewis C, Van Eenwyk C. Hypocalciuric hypercalcemia presenting as neonatal rib fractures: a newly described mutation of the calcium-sensing receptor gene. Pediatr Emerg Care. 2006;22(11):722–4.

    PubMed  Google Scholar 

  126. Tan YM, Cardinal J, Franks AH, et al. Autosomal dominant hypocalcemia: a novel activating mutation (E604K) in the cysteine-rich domain of the calcium-sensing receptor. J Clin Endocrinol Metab. 2003;88(2):605–10.

    PubMed  CAS  Google Scholar 

  127. Jap TS, Wu YC, Jenq SF, Won GS. A novel mutation in the calcium-sensing receptor gene in a Chinese subject with persistent hypercalcemia and hypocalciuria. J Clin Endocrinol Metab. 2001;86(1):13–5.

    PubMed  CAS  Google Scholar 

  128. Hendy GN, D’Souza-Li L, Yang B, Canaff L, Cole DE. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat. 2000;16(4):281–96.

    PubMed  CAS  Google Scholar 

  129. Baudry C, Rebours V, Houillier P, Hammel P, Ruszniewski P, Levy P. Recurrent acute pancreatitis caused by association of a novel mutation of the calcium-sensing receptor gene and a heterozygous mutation of the SPINK1 gene. Pancreas. 2010;39(3): 420–1.

    PubMed  Google Scholar 

  130. Miyashiro K, Kasamatsu TS, Steinmetz L, et al. Identification and functional analysis of a novel inactivating mutation (A804D) of the calcium-­sensing receptor gene. Clin Endocrinol (Oxf). 2004;61(6):780–2.

    CAS  Google Scholar 

  131. Dreimane D, Hendy GN, Alon U, Geffner ME. Normalization of serum calcium, phosphorus, and magnesium with homeopathic PTH in a child with hypocalcemic hypercalciuria (HCHC) and a mutation of the calcium-sensing receptor gene Paper presented at the Endocrine Society’s 83rd Annual Meeting, ENDO 2001, Denver.

    Google Scholar 

  132. Ma RC, Lam CW, So WY, Tong PC, Cockram CS, Chow CC. A novel CASR gene mutation in an octogenarian with asymptomatic hypercalcaemia. Hong Kong Med J. 2008;14(3):226–8.

    PubMed  Google Scholar 

  133. Janicic N, Soliman E, Pausova Z, et al. Mapping of the calcium-sensing receptor gene (CASR) to human chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat chromosome 11 and mouse chromosome 16. Mamm Genome. 1995;6(11):798–801.

    PubMed  CAS  Google Scholar 

  134. Felderbauer P, Klein W, Bulut K, et al. Mutations in the calcium-sensing receptor: a new genetic risk factor for chronic pancreatitis? Scand J Gastroenterol. 2006;41(3):343–8.

    PubMed  CAS  Google Scholar 

  135. Yabuta T, Miyauchi A, Inoue H, Yoshida H, Hirokawa M, Amino N. A patient with primary hyperparathyroidism associated with familial hypocalciuric hypercalcemia induced by a novel germline CaSR gene mutation. Asian J Surg. 2009; 32(2):118–22.

    PubMed  Google Scholar 

  136. Hu J, Mora S, Weber G, Zamproni I, Proverbio MC, Spiegel AM. Autosomal dominant hypocalcemia in monozygotic twins caused by a de novo germline mutation near the amino-terminus of the human calcium receptor. J Bone Miner Res. 2004;19(4): 578–86.

    PubMed  CAS  Google Scholar 

  137. Okazaki R, Chikatsu N, Nakatsu M, et al. A novel activating mutation in calcium-sensing receptor gene associated with a family of autosomal dominant hypocalcemia. J Clin Endocrinol Metab. 1999;84(1): 363–6.

    PubMed  CAS  Google Scholar 

  138. Hu J, Mora S, Colussi G, et al. Autosomal dominant hypocalcemia caused by a novel mutation in the loop 2 region of the human calcium receptor extracellular domain. J Bone Miner Res. 2002;17(8):1461–9.

    PubMed  CAS  Google Scholar 

  139. Lienhardt A, Bai M, Lagarde JP, et al. Activating mutations of the calcium-sensing receptor: management of hypocalcemia. J Clin Endocrinol Metab. 2001;86(11):5313–23.

    PubMed  CAS  Google Scholar 

  140. Hirai H, Nakajima S, Miyauchi A, et al. A novel activating mutation (C129S) in the calcium-sensing receptor gene in a Japanese family with autosomal dominant hypocalcemia. J Hum Genet. 2001;46(1):41–4.

    PubMed  CAS  Google Scholar 

  141. Burren CP, Curley A, Christie P, Rodda CP, Thakker RV. A family with autosomal dominant hypocalcaemia with hypercalciuria (ADHH): mutational analysis, phenotypic variability and treatment challenges. J Pediatr Endocrinol Metab. 2005;18(7):689–99.

    PubMed  CAS  Google Scholar 

  142. Haag C, Schulze E, Lorenz A, Frank-Raue K, Raue F. Novel mutations of the calcium-sensing receptor in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia Paper presented at the Endocrine Society’s 87th Annual Meeting, ENDO 2005, San Diego, CA.

    Google Scholar 

  143. Lovlie R, Eiken HG, Sorheim JI, Boman H. The Ca(2+)-sensing receptor gene (PCAR1) mutation T151M in isolated autosomal dominant hypoparathyroidism. Hum Genet. 1996;98(2):129–33.

    PubMed  CAS  Google Scholar 

  144. Conley YP, Finegold DN, Peters DG, Cook JS, Oppenheim DS, Ferrell RE. Three novel activating mutations in the calcium-sensing receptor responsible for autosomal dominant hypocalcemia. Mol Genet Metab. 2000;71(4):591–8.

    PubMed  CAS  Google Scholar 

  145. Nakajima K, Yamazaki K, Kimura H, Takano K, Miyoshi H, Sato K. Novel gain of function mutations of the calcium-sensing receptor in two patients with PTH-deficient hypocalcemia. Intern Med. 2009;48(22):1951–6.

    PubMed  Google Scholar 

  146. Kapoor A, Satishchandra P, Ratnapriya R, et al. An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene. Ann Neurol. 2008;64(2): 158–67.

    PubMed  CAS  Google Scholar 

  147. Lienhardt A, Bai M, Lagarde J, Kottler M, Farhid N. New mutation of the calcium-sensing receptor gene associated with isolated hypoparathyroidism. Paper presented at the Endocrine Society’s 83rd Annual Meeting, ENDO 2001, Denver.

    Google Scholar 

  148. Stock JL, Brown RS, Baron J, et al. Autosomal dominant hypoparathyroidism associated with short stature and premature osteoarthritis. J Clin Endocrinol Metab. 1999;84(9):3036–40.

    PubMed  CAS  Google Scholar 

  149. Mittelman SD, Hendy GN, Fefferman RA, et al. A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone. J Clin Endocrinol Metab. 2006;91(7): 2474–9.

    PubMed  CAS  Google Scholar 

  150. Uckun-Kitapci A, Underwood LE, Zhang J, Moats-Staats B. A novel mutation (E767K) in the second extracellular loop of the calcium sensing receptor in a family with autosomal dominant hypocalcemia. Am J Med Genet A. 2005;132A(2):125–9.

    PubMed  Google Scholar 

  151. Hendy GN, Minutti C, Canaff L, et al. Recurrent familial hypocalcemia due to germline mosaicism for an activating mutation of the calcium-sensing receptor gene. J Clin Endocrinol Metab. 2003;88(8): 3674–81.

    PubMed  CAS  Google Scholar 

  152. Cole DR, Soule S, Raizis A, George P. Hypocalcemia and a novel calcium-sensing receptor activating mutation. Paper presented at the Annual Scientific Meeting of The Royal Australasian College of Physicians 2005, Wellington, New Zealand.

    Google Scholar 

  153. Nagase T, Murakami T, Tsukada T, et al. A family of autosomal dominant hypocalcemia with a positive correlation between serum calcium and magnesium: identification of a novel gain of function mutation (Ser(820)Phe) in the calcium-sensing receptor. J Clin Endocrinol Metab. 2002;87(6):2681–7.

    PubMed  CAS  Google Scholar 

  154. Shiohara M, Mori T, Mei B, Brown EM, Watanabe T, Yasuda T. A novel gain-of-function mutation (F821L) in the transmembrane domain of calcium-sensing receptor is a cause of severe sporadic hypoparathyroidism. Eur J Pediatr. 2004;163(2): 94–8.

    PubMed  Google Scholar 

  155. Inoue D, Saika M, Ikeda Y, Matsumoto T. Successful treatment of hypoparathyroidism caused by a novel calcium-sensing receptor mutation with thiazide diuretics and low dose alfacalcidol. Paper presented at the Second Joint Meeting of The American Society for Bone and Mineral Research and The International Bone and Mineral Society 1998, Moscone Convention Center San Francisco, California, USA.

    Google Scholar 

  156. Hu J, McLarnon SJ, Mora S, et al. A region in the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+. J Biol Chem. 2005;280(6):5113–20.

    PubMed  CAS  Google Scholar 

  157. Zhao XM, Hauache O, Goldsmith PK, Collins R, Spiegel AM. A missense mutation in the seventh transmembrane domain constitutively activates the human Ca2+ receptor. FEBS Lett. 1999;448(1): 180–4.

    PubMed  CAS  Google Scholar 

  158. Lienhardt A, Garabedian M, Bai M, et al. A large homozygous or heterozygous in-frame deletion within the calcium-sensing receptor’s carboxylterminal cytoplasmic tail that causes autosomal dominant hypocalcemia. J Clin Endocrinol Metab. 2000;85(4):1695–702.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Raue MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Raue, F., Haag, C. (2012). The Calcium-Sensing Receptor: Physiology and Pathophysiology. In: Licata, A., Lerma, E. (eds) Diseases of the Parathyroid Glands. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5550-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5550-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5549-4

  • Online ISBN: 978-1-4419-5550-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics