Skip to main content

Maximal Monotone Operators in Banach Spaces

  • Chapter
  • First Online:
Nonlinear Differential Equations of Monotone Types in Banach Spaces

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

In this chapter we present the basic theory of maximal monotone operators in reflexive Banach spaces along with its relationship and implications in convex analysis and existence theory of nonlinear elliptic boundary value problems. However, the latter field is not treated exhaustively but only from the perspective of its implications to nonlinear dynamics in Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Barbu, Optimal Control of Variational Inequalities, Pitman, London, 1983.

    Google Scholar 

  2. V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, San Diego, 1993.

    MATH  Google Scholar 

  3. H. Brezis, Problemes unilatéraux, J. Math. Pures Appl., 51 (1972), pp. 1–168.

    MathSciNet  Google Scholar 

  4. H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis, E.Zarantonello (Ed.), Academic Press, New York, 1971.

    Google Scholar 

  5. H. Brezis, Equations et inéquations nonlinéaires dans les espaces vectorielles en dualité. Ann. Institute Fourier, 18 (1968), pp. 115–175.

    MATH  MathSciNet  Google Scholar 

  6. H. Brezis, G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 95 (1968), p. 153.

    MathSciNet  Google Scholar 

  7. H. Brezis, M.G. Crandall, A. Pazy, Perturbations of nonlinear maximal monotone sets, Comm. Pure Appl. Math., 13 (1970), pp. 123–141.

    Article  MathSciNet  Google Scholar 

  8. H. Brezis, F. Browder, Some properties of higher order Sobolev spaces, J. Math. Pures Appl., 61 (1982), pp. 245–259.

    MATH  MathSciNet  Google Scholar 

  9. F. Browder, Problèmes Nonlinéaires, Les Presses de l'Université de Montréal, 1966.

    Google Scholar 

  10. F. Browder, Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Nonlinear Functional Analysis, Symposia in Pure Math., vol. 18, Part 2, F. Browder (Ed.), American Mathematical Society, Providence, RI, 1970.

    Google Scholar 

  11. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  12. G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  13. P.M. Fitzpatrick, Surjectivity results for nonlinear mappings from a Banach space to its dual, Math. Ann., 204 (1973), pp. 177–188.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Friedman, Variational Principles and Free Boundary Problems, John Wiley and Sons, New York, 1982.

    MATH  Google Scholar 

  15. L.I. Hedberg, Two approximation problems in function spaces, Ark. Mat., 16 (1978), pp. 51–81.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.L. Lions, Quelques Méthodes de Résolution de Problèmes Nonlinéaires, Dunod-Gauthier Villars, Paris, 1969.

    Google Scholar 

  17. D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Applications, Academic Press, New York, 1980.

    MATH  Google Scholar 

  18. R. Kobayashi, Y. Giga, Equations with singular diffusivity, J. Statistical Physics, 95 (1999), pp. 1187–1220.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Minty, Monotone (nonlinear) operators in Hilbert spaces, Duke Math. J., 29 (1962), pp. 341–346.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Minty, On the generalization of a direct method of the calculus of variations, Bull. Amer. Math. Soc., 73 (1967), pp. 315–321.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), pp. 273–299.

    MATH  MathSciNet  Google Scholar 

  22. J.J. Moreau, Fonctionnelle Convexes, Seminaire sur les équations aux dérivées partielles, Collège de France, Paris 1966–1967.

    Google Scholar 

  23. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1969.

    Google Scholar 

  24. R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33 (1970), pp. 209–216.

    MATH  MathSciNet  Google Scholar 

  25. R.T. Rockafellar, Local boundedness of nonlinear monotone operators, Michigan Math. J., 16 (1969), pp. 397–407.

    Article  MATH  MathSciNet  Google Scholar 

  26. R.T. Rockafellar, On the maximality of sums of nonlinear operatorsw, Trans. Amer. Math. Soc., 149 (1970), pp. 75–88.

    Article  MATH  MathSciNet  Google Scholar 

  27. R.T. Rockafellar, Integrals which are convex functional II, Pacific J. Math., 39 (1971), pp. 439–469.

    MATH  MathSciNet  Google Scholar 

  28. R.T. Rockafellar, Integral functionals, normal integrands and measurable selections, Nonlinear Operators and the Calculus of Variations, J.P. Gossez, E. Dozo, J. Mawhin, L. Waelbroeck (Eds.), Lecture Notes in Mathematics, Springer-Verlag, New York, 1976, pp. 157–205.

    Google Scholar 

  29. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica, D, 60 (1992), pp. 259–260.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Barbu .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barbu, V. (2011). Maximal Monotone Operators in Banach Spaces. In: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5542-5_2

Download citation

Publish with us

Policies and ethics