Skip to main content

The Epiphyseal Growth Plate: The Engine That Drives Bone Elongation

  • Chapter
  • First Online:
Handbook of Growth and Growth Monitoring in Health and Disease

Abstract

The goal of this chapter is to analyze the functional and molecular significance of the growth cartilage and to consider how this tissue, as a functional unit, promotes regulated bone growth. The epiphyseal growth plate comprises a thin film of transient cartilage that is most often located between the diaphysis and the secondary center of ossification. It contains just one cell type, chondrocytes; these cells undergo a complex differentiation process and secrete an abundant extracellular matrix. In this review, attention is directed at considering the unique structure of the growth plate itself and the associated bone, while considerable emphasis is placed on assessing the life history and function of the resident cells. Initially, chondrocytes within the growth plate undergo several rounds of proliferation and secrete a complex extracellular matrix that contains structural proteins, proteoglycans, and bioactive growth factors; when the replicative phase has ceased, chondrocytes increase their volume and undergo terminal differentiation. During this period, they continue to synthesize a unique extracellular matrix, undergo a shape change, bud-off matrix vesicles, and generate foci of mineral which eventually coalesce with other mineral deposits to form calcified cartilage. In this latter phase of their life history, the post-mitotic hypertrophic chondrocytes express an autophagic phenotype. Subsequently, these terminally differentiated chondrocytes are deleted from the plate by induction of the apoptotic process. The mineralized septa are then used as sites for deposition of bone mineral by osteoblasts, which then form many of the trabeculae of the underlying metaphyseal bone. In the review, considerable emphasis is placed on the mechanism by which the hypertrophic cell generates the space for new bone formation. Finally, following a discussion of the cellular and molecular characteristics of the growth plate, especially the mode of survival of cells in their hypoxic microenvironment, the mechanism by which growth factors regulate proliferation and hypertrophy is discussed.

Vickram Srinivas: Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An apt description of the overall architecture of one of the authors of this review.

  2. 2.

    Not to be confused with the metallica rock group Nodes of Ranvier from South Carolina.

  3. 3.

    According to Wikipedia, in Canada, the United States, and South Africa, a flapjack is a thin and crispy but slightly chewy pancake. Its defining attribute is its large diameter, commonly measuring 25 cm or more. Not to be confused with the British flapjack which is a baked bar biscuit, made from rolled oats, butter, and brown sugar and usually served with Golden syrup or honey.

  4. 4.

    Not be confused with Paraechinus micropus which can be distinguished from other hedgehogs by its raccoon-like face.

  5. 5.

    Indeed, these cells do not generate CO2. Hence, from the perspective of environmental sustainability, the growth cartilage is exemplary. Decreased generation of gases by other tissues would help address problems associated with degradation of the ozone layer.

Abbreviations

AMPkinase:

Adenosine monophosphate kinase

Bcl2:

B cell leukemia protein 2

BMP:

Bone morphogenetic protein

BNIP3:

BCL2/adenovirus E1B 19 kDa interacting protein 3

BrdU:

Bromodeoxyuridine

Ca2+ :

Calcium ion

COMP:

Cartilage oligomeric protein

ERK1/2:

Extracellular signal-regulated kinase 1/2

FGF:

Fibroblast growth factor

FGF(R):

Fibroblast growth factor receptor

HDAC:

Histone deacetylase

HIF:

Hypoxia-inducible factor

IHH:

Indian hedgehog

LC-3:

Microtubule-associated light chain protein-3

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinase

NO:

Nitric oxide

PHD:

Prolyl hydroxylase

Pi:

Phosphate ion

PKC:

Protein kinase C

PTHrp:

Parathyroid hormone-related protein

ROS:

Reactive oxygen species

STAT:

Signal transducers and activators of transcription proteins

TGF:

Transforming growth factor

TIMP:

Tissue inhibitor of matrix metalloproteinase

VEGF:

Vascular endothelial growth factor

References

  • Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci USA. 2007;104:11085–90.

    Article  PubMed  CAS  Google Scholar 

  • Blumer MJ, Fritsch H, Pfaller K, Brenner E. Cartilage canals in the chicken embryo: ultrastructure and function. Anat Embryol (Berl). 2004;207:453–62.

    Article  CAS  Google Scholar 

  • Blumer MJ, Longato S, Fritsch H. Structure, formation and role of cartilage canals in the developing bone. Ann Anat. 2008;190:305–15.

    Article  PubMed  Google Scholar 

  • Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V. HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy. 2007;3:207–14.

    PubMed  CAS  Google Scholar 

  • Buckwalter JA, Mower D, Ungar R, Schaeffer J, Ginsberg B. Morphometric analysis of chondrocyte hypertrophy. J Bone Joint Surg Am. 1986;68:243–55.

    PubMed  CAS  Google Scholar 

  • Bush PG, Parisinos CA, Hall AC. The osmotic sensitivity of rat growth plate chondrocytes in situ; clarifying the mechanisms of hypertrophy. J Cell Physiol. 2008;214:621–9.

    Article  PubMed  CAS  Google Scholar 

  • Byers S, Caterson B, Hopwood JJ, Foster BK. Immunolocation analysis of glycosaminoglycans in the human growth plate. J Histochem Cytochem. 1992;40:275–82.

    Article  PubMed  CAS  Google Scholar 

  • Byers S, Moore AJ, Byard RW, Fazzalari NL. Quantitative histomorphometric analysis of the human growth plate from birth to adolescence. Bone. 2000;27:495–501.

    Article  PubMed  CAS  Google Scholar 

  • Crilly RG. Longitudinal overgrowth of chicken radius. J Anat. 1972;112:11–8.

    PubMed  CAS  Google Scholar 

  • Ehlen HW, Buelens LA, Vortkamp A. Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today. 2006;78:267–79.

    Article  PubMed  CAS  Google Scholar 

  • Farnum CE, Wilsman NJ. Determination of proliferative characteristics of growth plate chondrocytes by labeling with bromodeoxyuridine. Calcif Tissue Int. 1993;52:110–9.

    Article  PubMed  CAS  Google Scholar 

  • Farquharson C, Loveridge N. Cell proliferation within the growth plate of long bones assessed by bromodeoxyuridine uptake and its relationship to glucose 6-phosphate dehydrogenase activity. Bone Miner. 1990;10:121–30.

    Article  PubMed  CAS  Google Scholar 

  • Fritsch H, Eggers R. Ossification in the human calcaneus: a model for spatial bone development and ossification. J Pediatr Orthop. 1999;19:22–6.

    Article  PubMed  CAS  Google Scholar 

  • Fritsch H, Brenner E, Debbage P. Ossification of the calcaneus in the normal fetal foot and in clubfoot. J Anat. 2001;199:609–16.

    Article  PubMed  CAS  Google Scholar 

  • Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, et al. Normative data for iliac bone histomorphometry in growing children. Bone. 2000;26:103–9.

    Article  PubMed  CAS  Google Scholar 

  • Hansson LI. Daily growth in length of diaphysis measured by oxytetracycline in rabbit normally and after medullary plugging. Acta Orthop Scand. 1967;Suppl 101:101+.

    Google Scholar 

  • Hauser N, Paulsson M, Heinegard D, Morgelin M. Interaction of cartilage matrix protein with aggrecan. Increased covalent cross-linking with tissue maturation. J Biol Chem. 1996;271:32247–52.

    Article  PubMed  CAS  Google Scholar 

  • Hunt CD, Ollerich DA, Nielsen FH. Morphology of the perforating cartilage canals in the proximal tibial growth plate of the chick. Anat Rec. 1979;194:143–57.

    Article  PubMed  CAS  Google Scholar 

  • Hunziker EB, Schenk RK. Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J Physiol. 1989;414:55–71.

    PubMed  CAS  Google Scholar 

  • Issel EP. Ultrasonic measurement of the growth of fetal limb bones in normal pregnancy. J Perinat Med. 1985;13:305–13.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs KH. Evolution in the postcranial skeleton of late glacial and early postglacial European hominids. Z Morphol Anthropol. 1985;75:307–26.

    PubMed  CAS  Google Scholar 

  • Jenkins DH, Cheng DH, Hodgson AR. Stimulation of bone growth by periosteal stripping. A clinical study. J Bone Joint Surg Br. 1975;57:482–4.

    PubMed  CAS  Google Scholar 

  • Kanabe S, Hsu HH, Cecil RN, Anderson HC. Electron microscopic localization of adenosine triphosphate (ATP)-hydrolyzing activity in isolated matrix vesicles and reconstituted vesicles from calf cartilage. J Histochem Cytochem. 1983;31:462–70.

    Article  PubMed  CAS  Google Scholar 

  • Kember NF. Comparative patterns of cell division in epiphyseal cartilage plates in the rat. J Anat. 1972;111:137–42.

    PubMed  CAS  Google Scholar 

  • Kember NF, Walker KV. Control of bone growth in rats. Nature. 1971;229:428–9.

    Article  PubMed  CAS  Google Scholar 

  • Klatt AR, Paulsson M, Wagener R. Expression of matrilins during maturation of mouse skeletal tissues. Matrix Biol. 2002;21:289–96.

    Article  PubMed  CAS  Google Scholar 

  • Koyama E, Leatherman JL, Shimazu A, Nah HD, Pacifici M. Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs. Dev Dyn. 1995;203:152–62.

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg HM. PTHrP and skeletal development. Ann N Y Acad Sci. 2006;1068:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Kugler JH, Tomlinson A, Wagstaff A, Ward SM. The role of cartilage canals in the formation of secondary centres of ossification. J Anat. 1979;129:493–506.

    PubMed  CAS  Google Scholar 

  • Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development. 2004;131:1309–18.

    Article  PubMed  CAS  Google Scholar 

  • Lutfi AM. Mode of growth, fate and functions of cartilage canals. J Anat. 1970;106:135–45.

    PubMed  CAS  Google Scholar 

  • Mansfield K, Teixeira CC, Adams CS, Shapiro IM. Phosphate ions mediate chondrocyte apoptosis through a plasma membrane transporter mechanism. Bone. 2001;28:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Masoud I, Shapiro F, Kent R, Moses A. A longitudinal study of the growth of the New Zealand white rabbit: cumulative and biweekly incremental growth rates for body length, body weight, femoral length, and tibial length. J Orthop Res. 1986;4:221–31.

    Article  PubMed  CAS  Google Scholar 

  • Oshima Y, Akiyama T, Hikita A, Iwasawa M, Nagase Y, Nakamura M, Wakeyama H, Kawamura N, Ikeda T, Chung UI, Hennighausen L, Kawaguchi H, Nakamura K, Tanaka S. Pivotal role of Bcl-2 family proteins in the regulation of chondrocyte apoptosis. J Biol Chem. 2008;283:26499–508.

    Article  PubMed  CAS  Google Scholar 

  • Pacifici M, Koyama E, Shibukawa Y, Wu C, Tamamura Y, Enomoto-Iwamoto M, et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann N Y Acad Sci. 2006;1068:74–86.

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM. Misconceptions (1): epiphyseal fusion causes cessation of growth. Bone. 2002;30:337–9.

    Article  PubMed  CAS  Google Scholar 

  • Pritchett JW. Growth plate activity in the upper extremity. Clin Orthop Relat Res. 1991;268:235–42.

    Google Scholar 

  • Pucci B, Adams CS, Fertala J, Snyder BC, Mansfield KD, Tafani M, et al. Development of the terminally differentiated state sensitizes epiphyseal chondrocytes to apoptosis through caspase-3 activation. J Cell Physiol. 2007;210:609–15.

    Article  PubMed  CAS  Google Scholar 

  • Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet. 2008;17:3897–908.

    Article  PubMed  CAS  Google Scholar 

  • Raben N, Shea L, Hill V, Plotz P. Monitoring autophagy in lysosomal storage disorders. Methods Enzymol. 2009;453:417–49.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JI, Razquin S, Palacios J, Rubio V. Human growth plate development in the fetal and neonatal period. J Orthop Res. 1992;10:62–71.

    Article  PubMed  CAS  Google Scholar 

  • Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA. 2005;102:9637–42.

    Article  PubMed  CAS  Google Scholar 

  • Schipani E, Lanske B, Hunzelman J, Luz A, Kovacs CS, Lee K, et al. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci USA. 1997;94:13689–94.

    Article  PubMed  CAS  Google Scholar 

  • Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 2001;15:2865–76.

    PubMed  CAS  Google Scholar 

  • Schollmeier G, Uhthoff HK, Lewandrowski KU, Fukuhara K. Role of bone bark during growth in width of tubular bones. A study in human fetuses. Clin Orthop Relat Res. 1999;291–9.

    Google Scholar 

  • Settembre C, Arteaga-Solis E, McKee MD, de Pablo R, Al Awqati Q, Ballabio A, et al. Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev. 2008;22:2645–50.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro F, Holtrop ME, Glimcher MJ. Organization and cellular biology of the perichondrial ossification groove of ranvier: a morphological study in rabbits. J Bone Joint Surg Am. 1977;59:703–23.

    PubMed  CAS  Google Scholar 

  • Shapiro IM, Adams CS, Freeman T, Srinivas V. Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. Birth Defects Res C Embryo Today. 2005;75:330–9.

    Article  PubMed  CAS  Google Scholar 

  • Sissons HA, Kember NF. Longitudinal bone growth of the human femur. Postgrad Med J. 1977;53:433–7.

    Article  PubMed  CAS  Google Scholar 

  • Smits P, Dy P, Mitra S, Lefebvre V. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. J Cell Biol. 2004;164:747–58.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, et al. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem. 2008;283:21187–97.

    Article  PubMed  CAS  Google Scholar 

  • Terkhorn SP, Bohensky J, Shapiro IM, Koyama E, Srinivas V. Expression of HIF prolyl hydroxylase isozymes in growth plate chondrocytes: relationship between maturation and apoptotic sensitivity. J Cell Physiol. 2007;210:257–65.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Kirsch T. Annexin V/beta5 integrin interactions regulate apoptosis of growth plate chondrocytes. J Biol Chem. 2006;281:30848–56.

    Article  PubMed  CAS  Google Scholar 

  • Warrell E, Taylor JF. The role of periosteal tension in the growth of long bones. J Anat. 1979;128:179–84.

    PubMed  CAS  Google Scholar 

  • Weise M, De-Levi S, Barnes KM, Gafni RI, Abad V, Baron J. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc Natl Acad Sci USA. 2001;98:6871–6.

    Article  PubMed  CAS  Google Scholar 

  • White JR, Wilsman NJ, Leiferman EM, Noonan KJ. Histomorphometric analysis of an adolescent distal tibial physis prior to growth plate closure. J Child Orthop. 2008;2:315–9.

    Article  PubMed  Google Scholar 

  • Wilsman NJ, Farnum CE, Green EM, Lieferman EM, Clayton MK. Cell cycle analysis of proliferative zone chondrocytes in growth plates elongating at different rates. J Orthop Res. 1996a;14:562–72.

    Article  PubMed  CAS  Google Scholar 

  • Wilsman NJ, Farnum CE, Leiferman EM, Fry M, Barreto C. Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res. 1996b;14:927–36.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Golstein P. More than one way to go. Proc Natl Acad Sci USA. 2001;98:11–3.

    Article  PubMed  CAS  Google Scholar 

  • Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development. 2006;133:4667–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contract grant sponsor National Institutes of Health DE 015694 and DE 016383 (to VS) and DE 010875 and DE 013319 (to IMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irving M. Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Srinivas, V., Shapiro, I.M. (2012). The Epiphyseal Growth Plate: The Engine That Drives Bone Elongation. In: Preedy, V. (eds) Handbook of Growth and Growth Monitoring in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1795-9_80

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1795-9_80

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1794-2

  • Online ISBN: 978-1-4419-1795-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics