Skip to main content

Serum Adiponectin Levels, Insulin Resistance, and Lipids in Catch-Up and No Catch-Up Growth

  • Chapter
  • First Online:
Handbook of Growth and Growth Monitoring in Health and Disease

Abstract

Catch-up growth is observed in 90% of infants born small for gestational age (SGA), while those large for gestational age (LGA) often exhibit catch-down growth. Preterm infants may experience catch-up growth after an early period of postnatal growth restriction. Catch-up growth may have later adverse effects on insulin resistance (IR) and the lipids profile. It affects the body fat content and/or distribution, with possible changes in concentration of hormones secreted by adipose tissue, including those that modulate insulin sensitivity, such as adiponectin (Ad). IR is increased in full-term SGA individuals with catch-up growth and unaffected or decreased in those without catch-up growth. The increase in IR is observed as early as the third year of life and persists into adult life. Ad levels are consistently lower in full-term SGA prepubertal children who experience catch-up growth, while those with no catch-up growth have Ad levels similar to or lower than normal subjects. An inverse relationship between Ad and IR indices has been demonstrated in SGA children, but in adulthood the relationship curve may become U-shaped. Ad is related positively with birth weight (BW) and negatively with visceral adiposity. Ad remains low in SGA individuals until adulthood, suggesting that these disturbances are permanent. Prepubertal LGA children with normal body mass index (BMI) are insulin resistant, even those of healthy non-diabetic pregnancies, but there is inconsistency in their Ad levels. Preterm birth is associated with IR, and both fetal growth and childhood weight gain can affect IR indices during childhood. Limited evidence suggests that the combination of SGA and prematurity does not appear to result in IR greater than that in full-term SGA children. In full-term SGA individuals lack of catch-up growth in height is associated with an increase in t-CH or LDL-CH. Conversely, lipid metabolism is unaffected in SGA subjects with catch-up growth in BMI during childhood, provided they do not become overweight, but when full-term SGA individuals become obese during childhood they may have higher triglyceride levels than obese appropriate for gestational age (AGA) children. LGA children born to non-diabetic mothers may have normal lipid levels or higher protective HDL-C, but an abnormal lipid profile is observed in those born to mothers with poorly controlled diabetes during gestation. Postprandial triacylglycerol levels have been found increased in preterm-SGA men, although other studies in preterm subjects found no disturbances in lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ad:

Adiponectin

AGA:

Appropriate for gestational age

BMI:

Body mass index

CHD:

Coronary heart disease

DM:

Diabetes mellitus

HDL:

High-density lipoprotein

HMW Ad:

High molecular weight adiponectin

HOMA:

Homeostasis assessment model

IGF-I:

Insulin-like growth factor-I

IGFBP-1:

IGF binding protein 1

IR:

Insulin resistance

LDL:

Low-density lipoprotein

LGA:

Large for gestational age

SGA:

Small for gestational age

t-CH:

Total cholesterol

References

  • Barker DJP. Adult consequences of fetal growth restriction. Clin Obstetr Gynecol. 2006;49:270–83.

    Article  Google Scholar 

  • Bavdekar A, Yajnik C, Fall C, Bapat S, Pandit A, Deshpande V, Bhave S, Kellingray S, Jogjekar C. Insulin resistance syndrome in 8-year-old Indian children. Small at birth, big at 8 years, or both? Diabetes. 1999;48:2422–9.

    Article  PubMed  CAS  Google Scholar 

  • Bazaes RA, Alegria A, Pittaluga E, Avila A, Iniguez G, Mericq V. Determinants of insulin sensitivity and secretion in very-low-birth-weight children. J Clin Endocrinol Metab. 2004;89:1267–72.

    Article  PubMed  CAS  Google Scholar 

  • Bouhours-Nouet N, Dufresne S, Boux de Casson F, Mathieu E, Douay O, Gatelais F, Rouleau S, Coutant R. High birth weight and early postnatal weight gain protect obese children and adolescence from truncal adiposity and insulin resistance. Diab Care. 2008;31:1031–6.

    Article  CAS  Google Scholar 

  • Cianfarani S, Maiorana A, Geremia C, Scire G, Spadoni GL, Germani D. Blood glucose concentrations are reduced in children born small for gestational age (SGA), and thyroid-stimulating hormone levels are increased in SGA with blunted postnatal catch-up growth. J Clin Endocrinol Metab. 2003;88:2699–705.

    Article  PubMed  CAS  Google Scholar 

  • Cianfarani S, Martinez C, Maiorana A, Scire G, Spadoni GL, Boemi S. Adiponectin levels are reduced in children born small for gestational age and are inversely related to postnatal catch-up growth. J Clin Endocrinol Metab. 2004;89:1346–51.

    Article  PubMed  CAS  Google Scholar 

  • Darendeliler F, Poyrazoglu S, Sancakli O, Bas F, Gokcay G, Aki S, Eskiyurt N. Adiponectin is an indicator of insulin resistance in non-obese prepubertal children born large for gestational age (LGA) and is affected by birth weight. Clin Endocrinol. 2009;70:710–6.

    Article  CAS  Google Scholar 

  • Evagelidou E, Kiortsis D, Bairaktari E, Giapros V, Cholevas V, Tzallas C, Andronikou S. Lipid profile, glucose homeostasis, blood pressure, and obesity-anthropometric markers in macrosomic offspring of nondiabetic mothers. Diab Care. 2006;29:1197–201.

    Article  Google Scholar 

  • Evagelidou E, Giapros V, Challa A, Kiortsis D, Tsatsoulis A, Andronikou S. Serum adiponectin levels, insulin resistance and lipid profile in children born small for gestational age are affected by the severity of growth retardation at birth. Eur J Endocrinol. 2007;156:271–7.

    Article  PubMed  CAS  Google Scholar 

  • Fewtrell MS, Doherrty C, Cole TJ, Stafford M, Hales CN, Lucas A. Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia. 2000;43:714–7.

    Article  PubMed  CAS  Google Scholar 

  • Finken MJJ, Keijzer-Veen MG, Dekker FW, Frölich M, Hille ETM, Romijn JA, Wit JM, on behalf of the Dutch POPS-19 Collaborative Study Group. Preterm birth and later insulin resistance: effects of birth weight and postnatal growth in a population based longitudinal study from birth into adult life. Diabetologia. 2006;478–85.

    Google Scholar 

  • Giapros V, Evagelidou E, Challa A, Kiortsis D, Drougia A, Andronikou S. Serum adiponectin and leptin levels and insulin resistance in children born large-for-gestational-age are affected by the degree of overweight. Clin Endocrinol. 2007;66:353–9.

    Article  CAS  Google Scholar 

  • Hofman PL, Regan F, Jackson WE, Jefferies C, Knight DB, Robinson EM, Cutfield WS. Premature Birth and Later Insulin Resistance. N Eng J Med. 2004;351:2179–86.

    Article  CAS  Google Scholar 

  • Hovi P, Andersson S, Eriksson JG, Järvenpää AL, Strang-Karlsson S, Mäkitie O, Kajantie E. Glucose Regulation in Young Adults with Very Low Birth Weight. N Engl J Med. 2007;356:2053–63.

    Article  PubMed  CAS  Google Scholar 

  • Ibanez L, Lopez-Bermejo A, Suarez L, Marcos MV, Diaz M, de Zegher F. Visceral adiposity without overweight in children born small for gestational age. J Clin Endocrinol Metab. 2008;93:2079–83.

    Article  PubMed  CAS  Google Scholar 

  • Ibanez L, Lopez-Bermejo A, Diaz M, Marcos MV, Casano P, de Zegher F. Abdominal fat partitioning and high molecular weight adiponectin in short children born small for gestational age. J Clin Endocrinol Metab. 2009;94:1049–52.

    Article  PubMed  CAS  Google Scholar 

  • Jaquet D, Deghmoun S, Chevenne D, Collin P, Czernichow P, Levy-Marchal C. Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth. Diabetologia. 2005;48:849–55.

    Article  PubMed  CAS  Google Scholar 

  • Jaquet D, Deghmoun S, Chevenne D, Czernichow P, Levy-Marchal C. Low serum adiponectin levels in subjects born small for gestational age: impact on insulin sensitivity. Int J Obes. 2006;64:479–80.

    Google Scholar 

  • Kamoda T, Nozue H, Matsui A. Serum levels of adiponectin in short children born small for gestatinal age. Clin Endocrinol (Oxf). 2007;66:290–4.

    Article  CAS  Google Scholar 

  • Kim CS, Park JS, Park J, Nam JS, Kang ES, Ahn CW, Cha BS, Lim SK, Kim KR, Lee HC, Huh KB, Kim DJ. Does birthweight predict adolescent adiponectin levels? Clin Endocrinol (Oxf). 2006;64:162–8.

    Article  CAS  Google Scholar 

  • Leunissen RWJ, Oosterbeek P, Hol LKM, Hellingman AA, Stijnen T, Hokken-Koelega ACS. Fat mass accumulation during childhood determines insulin sensitivity in early adulthood. J Clin Endocrinol Metab. 2008;93:445–51.

    Article  PubMed  CAS  Google Scholar 

  • Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bermejo A, Casano-Sancho P, Fernadez-Real JM, Kihara S, Funahashi T, Rodriguez-Hierro F, Ricart W, Ibanez L. Both intrauterine growth restriction and postnatal growth influence childhood serum concentrations of adiponectin. Clin Endocrinol (Oxf). 2004;61:544–52.

    Article  CAS  Google Scholar 

  • Matsuzawa Y. Adiponectin: Identification, physiology and clinical relevance in metabolic and vascular disease. Atherosclerosis. 2005;Suppl 6:7–14.

    PubMed  CAS  Google Scholar 

  • Meas T, Deghmoun S, Armoogum P, Alberti C, Levy-Marchal C. Consequences of being born small for gestational age on body composition: an 8-year follow-up study. J Clin Endocrinol Metab. 2008;93:3804–09.

    Article  PubMed  CAS  Google Scholar 

  • Mericq V, Ong KK, Bazaes R, Peña V, Avila A, Salazar T, Soto N, Iñiguez G, Dunger DB. Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia. 2005;48:2609–14.

    Article  PubMed  CAS  Google Scholar 

  • Merzouk H, Bouchenak M, Loukidi B, Madani S, Prost J, Belleville J. Fetal macrosomia related to maternal poorly controlled type 1 diabetes strongly impairs serum lipoprotein concentrations and composition. J Clin Pathol. 2000;53:917–23.

    Article  PubMed  CAS  Google Scholar 

  • Ogdena CL, Schoendorfa KC, Kielya JL, Gillmanb MW. Fetal growth and childhood cholesterol levels in the United States. Paediatr Perinat Epidemiol. 2008;22:5–11.

    Article  Google Scholar 

  • Ong KK, Petry CJ, Emmett PM, Sandhu MS, Kiess W, Hales CN, Ness AR, Dunger DB, the ALSPAC study team. Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth, and plasma insulin-like growth factor-I levels. Diabetologia. 2004;47:1064–70.

    PubMed  CAS  Google Scholar 

  • Pulzer F, Haase U, Kratzsch J, Richter V, Rassoul F, Kiess W, Keller E. Lipoprotein (a) levels in formerly small-for-gestational–age children. Horm Res. 1999;52:241–6.

    Article  PubMed  CAS  Google Scholar 

  • Reinehr T, Kleber M, Toschke AM. Small for gestational age status is associated with metabolic syndrome in overweight children. Eur J Endocrinol. 2009;160:579–84.

    Article  PubMed  CAS  Google Scholar 

  • Rotteveel J, van Weissenbruch MM, Twisk JWR, Delemarre-Van de Waal HA. Abnormal lipid profile and hyperinsulinaemia after a mixed meal: additional cardiovascular risk factors in young adults born preterm. Diabetologia. 2008;51:1269–75.

    Article  PubMed  CAS  Google Scholar 

  • Sancakli O, Darandeliler F, Bas F, Gokcay G, Disci R, Aki S, Eskiyurt N. Insulin, adiponectin,IGFBP-1 levels and body composition in small for gestational age born non-obese children during prepubertal ages. Clin Endocrinol. 2008;69:88–92.

    Article  CAS  Google Scholar 

  • Tenhola S, Martikainen A, Rahiala E, Herrgard E, Halonen P, Voutilainen R. Serum lipid concentrations and growth characteristics in 12-year-old children born small for gestational age. Pediatr Res. 2000;48:623–8.

    Article  PubMed  CAS  Google Scholar 

  • Torre P, Ladaki C, Scire G, Spadoni GL, Cianfarani S. Catch-up growth in body mass index is associated neither with reduced insulin sensitivity nor with altered lipid profile in children born small for gestational age. J Endocrinol Invest. 2008;31:760–4.

    PubMed  CAS  Google Scholar 

  • Van der Kaay D, Deal C, de Kort S, Willemsen R, Leunissen R, Ester W, Paquette J, van Doorn J, Hokken-Koelega A. Insulin-like growth factor-binding protein-1: serum levels, promoter polymorphism, and associations with components of the metabolic syndrome in short subjects born small for gestational age. J Clin Endocrinol Metab. 2009;94:1386–92.

    Article  PubMed  Google Scholar 

  • Veening MA, Van Weissenbruch MM, Delemarre-Van De Waal HA. Glucose tolerance insulin sensitivity and insulin secretion in children born small for gestational age. J Clin Endocrinol Metab. 2002;87:4657–61.

    Article  PubMed  CAS  Google Scholar 

  • Willemsen R, de Kort S, van der Kaay D, Hokken-Koelega A. Independent effects of prematurity on metabolic and cardiovascular risk factors in short small-for-gestational-age children. J Clin Endocrinol Metab. 2008;93:452–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Giapros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giapros, V., Andronikou, S. (2012). Serum Adiponectin Levels, Insulin Resistance, and Lipids in Catch-Up and No Catch-Up Growth. In: Preedy, V. (eds) Handbook of Growth and Growth Monitoring in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1795-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1795-9_58

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1794-2

  • Online ISBN: 978-1-4419-1795-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics