Skip to main content

Cerebral Metabolism in the Very Low Birth Weight Infant

  • Chapter
  • First Online:
Handbook of Growth and Growth Monitoring in Health and Disease
  • 188 Accesses

Abstract

The preterm brain undergoes significant structural and functional changes throughout the third trimester. These changes require a constant supply of energy which is provided predominantly in the form of glucose. Alterations in this natural process can result in lifelong consequences for the very low birth weight infant. In this chapter the reader is provided with an insight into some of the neuroimaging modalities available to assess structural and functional changes in the preterm brain as well as an insight into the assessment of cerebral glucose transport and glucose metabolism in the very low birth weight infant. A review is provided of the assessment of cerebral blood flow and cerebral oxygen consumption in the very low birth weight infant followed by some of the processes that may interfere with normal cerebral metabolism in the preterm very low birth weight infant. The preterm brain has low energy requirements which coupled with low cerebral blood flow, means that the immature brain has the ability to deal with many significant alterations in cerebral metabolism. However, despite these factors many conditions can disrupt normal metabolism and result in brain injury. The last 30 years have witnessed significant improvements in survival of extremely preterm infants; the focus has now shifted towards improved quality of life in survivors. A better understanding of normal cerebral metabolism will allow one to identify alterations in this process and hence direct intervention, with the ultimate goal being improved long-term neurodevelopmental outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABP:

Arterial blood pressure

ADC:

Apparent diffusion coefficient

AEEG:

Amplitude integrated electroencephalogram

CBF:

Cerebral blood flow

CBFV:

Cerebral blood flow velocity

CMRglc :

Cerebral glucose metabolism

CTXglc :

Cerebral glucose transport

CVo2 :

Cerebral oxygen consumption

DI:

Diffusion imaging

HIE:

Hypoxic ischaemic encephalopathy

EEG:

Electroencephalogram

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

PET:

Positron emission topography

VLBW:

Very low birth weight (<1500 g)

References

  • Abrams RM, Ito M, Frisinger JE, Patlak CS, Pettigrew KD, Kennedy C. Local cerebral glucose utilization in fetal and neonatal sheep. Am J Physiol. 1984;246:R608–18.

    PubMed  CAS  Google Scholar 

  • Adelson PD, Nemoto E, Scheuer M, Painter M, Morgan J, Yonas H. Noninvasive continuous monitoring of cerebral oxygenation periictally using near-infrared spectroscopy: a preliminary report. Epilepsia. 1999;40:1484–9.

    Article  PubMed  CAS  Google Scholar 

  • Altman DI, Perlman JM, Volpe JJ, Powers WJ. Cerebral oxygen metabolism in newborns. Pediatrics. 1993;92:99–104.

    PubMed  CAS  Google Scholar 

  • Altman DI, Powers WJ, Perlman JM, Herscovitch P, Volpe SL, Volpe JJ. Cerebral blood flow requirement for brain viability in newborn infants is lower than in adults. Ann Neurol. 1988;24:218–26.

    Article  PubMed  CAS  Google Scholar 

  • Auer RN. Hypoglycemic brain damage. Metab Brain Dis. 2004;19:169–75.

    Article  PubMed  Google Scholar 

  • Augustine EM, Spielman DM, Barnes PD, Sutcliffe TL, Dermon JD, Mirmiran M, Clayton DB, Ariagno RL. Can magnetic resonance spectroscopy predict neurodevelopmental outcome in very low birth weight preterm infants? J Perinatol. 2008;28:611–8.

    Article  PubMed  CAS  Google Scholar 

  • Barkovich AJ. Normal development. In Pediatric neuroimaging. Philadelphia, PA: Lippincott Williams & Wilkins, PA; 2000. p. 13–69.

    Google Scholar 

  • Bartha AI, Foster-Barber A, Miller SP, Vigneron DB, Glidden DV, Barkovich AJ, Ferriero DM. Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res. 2004;56:960–6.

    Article  PubMed  CAS  Google Scholar 

  • Biagioni E, Frisone MF, Laroche S, Kapetanakis BA, Ricci D, Adeyi-Obe M, Lewis H, Kennea N, Cioni G, Cowan F, Rutherford M, Azzopardi D, Mercuri E. Maturation of cerebral electrical activity and development of cortical folding in young very preterm infants. Clin Neurophysiol. 2007;118:53–9.

    Article  PubMed  CAS  Google Scholar 

  • Blennow M, Hagberg H, Ingvar M, Zeman J, Wang YS, Lagercrantz H. Neurochemical and biophysical assessment of neonatal hypoxic-ischemic encephalopathy. Semin Perinatol. 1994;18:30–5.

    PubMed  CAS  Google Scholar 

  • Boylan GB, Young K, Panerai RB, Rennie JM, Evans DH. Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res. 2000;48:12–7.

    Article  PubMed  CAS  Google Scholar 

  • Busija DW, Leffler CW. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs. Am J Physiol. 1987;253:H869–73.

    PubMed  CAS  Google Scholar 

  • Cappellini M, Rapisardi G, Cioni ML, Fonda C. Acute hypoxic encephalopathy in the full-term newborn: correlation between magnetic resonance spectroscopy and neurological evaluation at short and long term. Radiol Med. 2002;104:332–40.

    PubMed  Google Scholar 

  • Chugani HT. Positron emission tomography scanning: applications in newborns. Clin Perinatol. 1993;20:395–409.

    PubMed  CAS  Google Scholar 

  • Cornblath M, Hawdon JM, Williams AF, Aynsley-Green A, Ward-Platt MP, Schwartz R, Kalhan SC. Controversies regarding definition of neonatal hypoglycemia: suggested operational thresholds. Pediatrics. 2000;105:1141–5.

    Article  PubMed  CAS  Google Scholar 

  • Cremer JE. Substrate utilization and brain development. J Cereb Blood Flow Metab. 1982;2:394–407.

    Article  PubMed  CAS  Google Scholar 

  • Dinneen S, GerichJ, Rizza R. Carbohydrate metabolism in non-insulin-dependent diabetes mellitus. N Engl J Med. 1992;327:707–13.

    Article  PubMed  CAS  Google Scholar 

  • Evans N, Kluckow M, Simmons M, Osborn D. Which to measure, systemic or organ blood flow? Middle cerebral artery and superior vena cava flow in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 2002;87:F181–4.

    Article  PubMed  CAS  Google Scholar 

  • Evans D, Levene M. Neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 1998;78:F70–5.

    Article  PubMed  CAS  Google Scholar 

  • Greisen G. Cerebral blood flow in preterm infants during the first week of life. Acta Paediatr Scand. 1986;75:43–51.

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka S, Takashima S, Morooka K. Study of the maturation of the child’s brain using 31P-MRS. Pediatr Neurol 1998;18:305–10.

    Article  PubMed  CAS  Google Scholar 

  • Hanrahan JD, Sargentoni J, Azzopardi D, Manji K, Cowan FM, Rutherford MA, Cox IJ, Bell JD, Bryant DJ, Edwards AD. Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatr Res. 1996:39;584–90.

    Article  PubMed  Google Scholar 

  • Hatzidaki E, Giahnakis E, Maraka S, Korakaki E, Manoura A, Saitakis E, Papamastoraki I, Margari KM, Giannakopoulou C. Risk factors for periventricular leukomalacia. Acta Obstet Gynecol Scand. 2009;88:110–5.

    Article  PubMed  Google Scholar 

  • Hellmann J, Vannucci RC, Nardis EE. Blood-brain barrier permeability to lactic acid in the newborn dog: lactate as a cerebral metabolic fuel. Pediatr Res 1982;16:40–4.

    Article  PubMed  CAS  Google Scholar 

  • Huppi PS, Fusch C, Boesch C, Burri R, Bossi E, Amato M, Herschkowitz N. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res. 1995;37:145–50.

    Article  PubMed  CAS  Google Scholar 

  • Huppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol. 1998;43:224–35.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen J, Schmidt JF, Waldemar G, Paulson OB. The acute effect of dilevalol on cerebral blood flow and oxygen consumption in normotensive humans. J Cardiovasc Pharmacol. 1990;15:574–8.

    Article  PubMed  CAS  Google Scholar 

  • Jones MD, Jr, Burd LI, Makowski EL, Meschia G, Battaglia FC. Cerebral metabolism in sheep: a comparative study of the adult, the lamb, and the fetus. Am J Physiol 1975;229:235–9.

    PubMed  CAS  Google Scholar 

  • Kesler SR, Ment LR, Vohr B, Pajot SK, Schneider KC, Katz KH, Ebbitt TB, Duncan CC, Makuch RW, Reiss AL. Volumetric analysis of regional cerebral development in preterm children. Pediatr Neurol. 2004;31:318–25.

    Article  PubMed  Google Scholar 

  • Kidokoro H, Okumura A, Hayakawa F, Kato T, Maruyama K, Kubota T, Suzuki M, Natsume J, Watanabe K, Kojima S. Chronologic changes in neonatal EEG findings in periventricular leukomalacia. Pediatrics. 2009;124:e468–75.

    Article  PubMed  Google Scholar 

  • Kimura H, Fujii Y, Itoh S, Matsuda T, Iwasaki T, Maeda M, Konishi Y, Ishii Y. Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy. Radiology. 1995;194:483–9.

    PubMed  CAS  Google Scholar 

  • Kissack CM, Garr R, Wardle SP, Weindling AM. Cerebral fractional oxygen extraction in very low birth weight infants is high when there is low left ventricular output and hypocarbia but is unaffected by hypotension. Pediatr Res. 2004a;55:400–5.

    Article  PubMed  Google Scholar 

  • Kissack CM, Garr R, Wardle SP, Weindling AM. Postnatal changes in cerebral oxygen extraction in the preterm infant are associated with intraventricular hemorrhage and hemorrhagic parenchymal infarction but not periventricular leukomalacia. Pediatr Res. 2004b;56:111–6.

    Article  PubMed  Google Scholar 

  • Kissack CM, Garr R, Wardle SP, Weindling AM. Cerebral fractional oxygen extraction is inversely correlated with oxygen delivery in the sick, newborn, preterm infant. J Cereb Blood Flow Metab. 2005;25:545–53.

    Article  PubMed  Google Scholar 

  • Klingberg T, Vaidya CJ, Gabrieli JD, Moseley ME, Hedehus M. Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport. 1999;10:2817–21.

    Article  PubMed  CAS  Google Scholar 

  • Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.

    PubMed  CAS  Google Scholar 

  • Lou HC, Skov H, Pedersen H. Low cerebral blood flow: a risk factor in the neonate. J Pediatr. 1979;95:606–9.

    Article  PubMed  CAS  Google Scholar 

  • Lucas A, Morley R, Cole TJ. Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. BMJ. 1988;297:1304–8.

    Article  PubMed  CAS  Google Scholar 

  • Maunu J, Parkkola R, Rikalainen H, Lehtonen L, Haataja L, Lapinleimu H. Brain and ventricles in very low birth weight infants at term: a comparison among head circumference, ultrasound, and magnetic resonance imaging. Pediatrics. 2009;123:617–26.

    Article  PubMed  Google Scholar 

  • McGowan JE, Chen L, Gao D, Trush M, Wei C. Increased mitochondrial reactive oxygen species production in newborn brain during hypoglycemia. Neurosci Lett. 2006;399:111–4.

    Article  PubMed  CAS  Google Scholar 

  • Meek JH, Tyszczuk L, Elwell CE, Wyatt JS. Cerebral blood flow increases over the first three days of life in extremely preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1998;78:F33–7.

    Article  PubMed  CAS  Google Scholar 

  • Ment LR, Kesler S, Vohr B, Katz KH, Baumgartner H, Schneider KC, Delancy S, Silbereis J, Duncan CC, Constable RT, Makuch RW, Reiss AL. Longitudinal brain volume changes in preterm and term control subjects during late childhood and adolescence. Pediatrics. 2009;123:503–11.

    Article  PubMed  Google Scholar 

  • Montassir H, Maegaki Y, Ohno K, Ogura K. Long term prognosis of symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia. Epilepsy Res. 2010;88:93–9.

    Article  PubMed  Google Scholar 

  • Moran M, Miletin J, Pichova K, Dempsey EM. Cerebral tissue oxygenation index and superior vena cava blood flow in the very low birth weight infant. Acta Paediatr. 2009;98:43–6.

    Article  PubMed  CAS  Google Scholar 

  • Mujsce DJ, Christensen MA, Vannucci RC. Regional cerebral blood flow and glucose utilization during hypoglycemia in newborn dogs. Am J Physiol. 1989;256:H1659–66.

    PubMed  CAS  Google Scholar 

  • Musson RE, Batty R, Mordekar SR, Wilkinson ID, Griffiths PD, Connolly DJ. Diffusion-weighted imaging and magnetic resonance spectroscopy findings in a case of neonatal hypoglycaemia. Dev Med Child Neurol. 2009;51:653–4.

    Article  PubMed  Google Scholar 

  • Nagy Z, Ashburner J, Andersson J, Jbabdi S, Draganski B, Skare S, Bohm B, Smedler AC, Forssberg H, Lagercrantz H. Structural correlates of preterm birth in the adolescent brain. Pediatrics. 2009;124:e964–72.

    Article  PubMed  Google Scholar 

  • Naulaers G, Morren G, Van Huffel S, Casaer P, Devlieger H. Cerebral tissue oxygenation index in very premature infants. Arch Dis Child Fetal Neonatal Ed. 2002;87:F189–92.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen The Tich S, Anderson PJ, Shimony JS, Hunt RW, Doyle LW, Inder TE. A novel quantitative simple brain metric using MR imaging for preterm infants. AJNR Am J Neuroradiol. 2009;30:125–31.

    Article  PubMed  CAS  Google Scholar 

  • Osborn DA, Evans N, Kluckow M, Bowen JR, Rieger I. Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics 2007;120:372–80.

    Article  PubMed  Google Scholar 

  • Patel J, Marks K, Roberts I, Azzopardi D, Edwards AD. Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green. Pediatr Res. 1998;43:34–9.

    Article  PubMed  CAS  Google Scholar 

  • Perlman JM. White matter injury in the preterm infant: an important determination of abnormal neurodevelopment outcome. Early Hum Dev. 1998;53:99–120.

    Article  PubMed  CAS  Google Scholar 

  • Perlman JM, Volpe JJ. Seizures in the preterm infant: effects on cerebral blood flow velocity, intracranial pressure, and arterial blood pressure. J Pediatr. 1983;102:288–93.

    Article  PubMed  CAS  Google Scholar 

  • Powers WJ, Rosenbaum JL, Dence CS, Markham J, Videen TO. Cerebral glucose transport and metabolism in preterm human infants. J Cereb Blood Flow Metab. 1998;18:632–8.

    Article  PubMed  CAS  Google Scholar 

  • Pryds O, Greisen G, Friis-Hansen B. Compensatory increase of CBF in preterm infants during hypoglycaemia. Acta Paediatr Scand. 1988;77:632–7.

    Article  PubMed  CAS  Google Scholar 

  • Rademaker KJ, Rijpert M, Uiterwaal CS, Lieftink AF, van Bel F, Grobbee DE, de Vries LS, Groenendaal F. Neonatal hydrocortisone treatment related to 1H-MRS of the hippocampus and short-term memory at school age in preterm born children. Pediatr Res. 2006;59:309–13.

    Article  PubMed  CAS  Google Scholar 

  • Rozance PJ, Hay WW. Hypoglycemia in newborn infants: features associated with adverse outcomes. Biol Neonate. 2006;90:74–86.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.

    Article  PubMed  Google Scholar 

  • Skov L, Pryds O, Greisen G, Lou H. Estimation of cerebral venous saturation in newborn infants by near infrared spectroscopy. Pediatr Res. 1993;33:52–5.

    Article  PubMed  CAS  Google Scholar 

  • Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, Svenningsen NW. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000;106:625–32.

    Article  PubMed  CAS  Google Scholar 

  • Vannucci RC, Mujsce DJ. Effect of glucose on perinatal hypoxic-ischemic brain damage. Biol Neonate. 1992;62:215–24.

    Article  PubMed  CAS  Google Scholar 

  • Vannucci RC, Vannucci SJ. Cerebral carbohydrate metabolism during hypoglycemia and anoxia in newborn rats. Ann Neurol. 1978;4:73–9.

    Article  PubMed  CAS  Google Scholar 

  • Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 1997;21:2–21.

    Article  PubMed  CAS  Google Scholar 

  • van Wezel-Meijler G, Steggerda SJ, Leijser LM. Cranial ultrasonography in neonates: role and limitations. Semin Perinatol. 2000;34:28–38.

    Article  Google Scholar 

  • Vigneron DB, Barkovich AJ, Noworolski SM, von dem Bussche M, Henry RG, Lu Y, Partridge JC, Gregory G, Ferriero DM. Three-dimensional proton MR spectroscopic imaging of premature and term neonates. AJNR Am J Neuroradiol. 2001;22:1424–33.

    PubMed  CAS  Google Scholar 

  • Volpe J. Neurology of the newborn. 5th ed. Philadelphia, PA: Saunders; 2008.

    Google Scholar 

  • Volpe JJ, Herscovitch P, Perlman JM, Kreusser KL, Raichle ME. Positron emission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol. 1985;17:287–96.

    Article  PubMed  CAS  Google Scholar 

  • Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355:685–94.

    Article  PubMed  CAS  Google Scholar 

  • Young RS, Petroff OA, Chen B, Gore JC, Aquila WJ. Brain energy state and lactate metabolism during status epilepticus in the neonatal dog: in vivo 31P and 1H nuclear magnetic resonance study. Pediatr Res. 1991;29:191–5.

    Article  PubMed  CAS  Google Scholar 

  • Yoxall CW, Weindling AM. Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age. Pediatr Res. 1998;44:283–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene M. Dempsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dempsey, E.M. (2012). Cerebral Metabolism in the Very Low Birth Weight Infant. In: Preedy, V. (eds) Handbook of Growth and Growth Monitoring in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1795-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1795-9_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1794-2

  • Online ISBN: 978-1-4419-1795-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics