Advertisement

C-Type Natriuretic Peptide (CNP) and Postnatal Linear Growth

  • Timothy C.R. Prickett
  • Eric A. Espiner
Chapter

Abstract

C-type natriuretic peptide (CNP) is a member of a family of structurally related peptides, including atrial (ANP) and B-type (BNP) natriuretic peptides, best known for their cardiovascular actions. Surprisingly, recent evidence from rodents shows that CNP is essential for endochondral bone growth – blocking the CNP signaling pathway yields a dwarfed phenotype whereas overexpression leads to skeletal overgrowth. In humans, loss of function mutations in the CNP receptor gene (NPR-B) cause the profoundly dwarfed phenotype of acromesomelic dysplasia Maroteaux type. By contrast, overexpression of CNP, arising from balanced translocations involving chromosome 2, results in severe skeletal overgrowth as reported recently in three patients with marfanoid habitus. CNP is expressed in a broad range of tissues including bone, but the circulating concentration of CNP in blood is low, close to assay detection limits, due in part to its rapid degradation by clearance receptors and enzyme hydrolysis. However, a stable product of the CNP gene, amino-terminal proCNP (NTproCNP), is readily measurable in plasma and has been used to study the regulation of CNP secretion in vivo. Plasma NTproCNP is strongly correlated with skeletal growth and markers of bone formation in lambs and children throughout the growing period. In addition plasma levels of NTproCNP are rapidly suppressed by glucocorticoid treatment or caloric restriction (which reduce growth) and stimulated by anabolic hormones including GH, thyroid hormones, and estrogens. These and other recent findings support the view that the plasma concentration of NTproCNP, in reflecting growth plate cartilage activity, is a unique marker of linear growth which may assist in the diagnosis of growth disorders in humans.

Keywords

Growth Plate Caloric Restriction Atrial Natriuretic Peptide Height Velocity Hypertrophic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ANP

Atrial natriuretic peptide

BMP-2

Bone morphogenetic protein 2

BMP-4

Bone morphogenetic protein 4

BNP

B-type natriuretic peptide

cGKII

cGMP-dependent protein kinase II

CNP

C-type natriuretic peptide

FGFR3

Fibroblast growth factor receptor 3

GC

Guanylate cyclase

GH

Growth hormone

IGF-1

Insulin-like growth factor 1

NPR-A

Natriuretic peptide receptor type A

NPR-B

Natriuretic peptide receptor type B

NPR-C

Natriuretic peptide receptor type C

NTproCNP

Aminoterminal pro C-type natriuretic peptide

proCNP

C-type natriuretic peptide prohormone

TGFβ

Transforming growth factor-beta

Notes

Acknowledgments

The authors would like to gratefully acknowledge the contributions to this work by the following colleagues: Vicky Cameron, Brian Darlow, Mark Richards, Tim Yandle (University of Otago, New Zealand); Graham Barrell, Martin Wellby (Lincoln University, New Zealand); Bronwyn Dixon, Adrienne Lynn (Christchurch Hospital, New Zealand); Jane Harding (Liggins Institute, New Zealand); Rob Olney (Nemours Children’s Clinic, Pensacola, FL, USA); Mitch Geffner and Christina Southern Reh (Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, USA). This work was supported by grants from the Health Research Council of New Zealand, the Canterbury Medical Research Foundation and the Lotteries Board of New Zealand, the National Heart Foundation, and the New Zealand Child Health Research Foundation.

References

  1. Acuff CG, Huang H, Steinhelper ME. Estradiol induces C-type natriuretic peptide gene expression in mouse uterus. Am J Physiol. 1997;273:H2672–7.Google Scholar
  2. Agoston H, Khan S, James CG, Gillespie JR, Serra R, Stanton LA, Beier F. C-type natriuretic peptide regulates endochondral bone growth through p38 MAP kinase-dependent and -independent pathways. BMC Dev Biol. 2007;7:18.PubMedCrossRefGoogle Scholar
  3. Bartels CF, Bukulmez H, Padayatti P, Rhee DK, van Ravenswaaij-Arts C, Pauli RM, Mundlos S, Chitayat D, Shih LY, Al-Gazali LI, Kant S, Cole T, Morton J, Cormier-Daire V, Faivre L, Lees M, Kirk J, Mortier GR, Leroy J, Zabel B, Kim CA, Crow Y, Braverman NE, van den Akker F, Warman ML. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet. 2004;75:27–34.PubMedCrossRefGoogle Scholar
  4. Bocciardi R, Giorda R, Buttgereit J, Gimelli S, Divizia MT, Beri S, Garofalo S, Tavella S, Lerone M, Zuffardi O, Bader M, Ravazzolo R, Gimelli G. Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation. Hum Mutat. 2007;28:724–31.PubMedCrossRefGoogle Scholar
  5. Cao L, Gardner DG. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension. 1995;25:227–34.PubMedGoogle Scholar
  6. Chikuda H, Kugimiya F, Hoshi K, Ikeda T, Ogasawara T, Shimoaka T, Kawano H, Kamekura S, Tsuchida A, Yokoi N, Nakamura K, Komeda K, Chung UI, Kawaguchi H. Cyclic GMP-dependent protein kinase II is a molecular switch from proliferation to hypertrophic differentiation of chondrocytes. Genes Dev. 2004;18:2418–29.PubMedCrossRefGoogle Scholar
  7. Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y, Itoh H, Tanaka K, Saito Y, Katsuki M. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA. 2001;98:4016–21.PubMedCrossRefGoogle Scholar
  8. Espiner EA, Richards AM, Yandle TG, Nicholls MG. Natriuretic hormones. Endocrinol Metab Clin North Am. 1995;24:481–509.PubMedGoogle Scholar
  9. Espiner EA, Prickett TC, Yandle TG, Barrell GK, Wellby M, Sullivan MJ, Darlow BA. ABCs of natriuretic peptides: growth. Horm Res. 2007;67 Suppl 1:81–90.CrossRefGoogle Scholar
  10. Estrada K, Krawczak M, Schreiber S, van Duijn K, Stolk L, van Meurs JB, Liu F, Penninx BW, Smit JH, Vogelzangs N, Hottenga JJ, Willemsen G, de Geus EJ, Lorentzon M, von Eller-Eberstein H, Lips P, Schoor N, Pop V, de Keijzer J, Hofman A, Aulchenko YS, Oostra BA, Ohlsson C, Boomsma DI, Uitterlinden AG, van Duijn CM, Rivadeneira F, Kayser M. A genome-wide association study of northwestern Europeans involves the CNP signaling pathway in the etiology of human height variation. Hum Mol Genet. 2009;18:3516–24.Google Scholar
  11. Furuya M, Yoshida M, Hayashi Y, Ohnuma N, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Commun. 1991;177:927–31.PubMedCrossRefGoogle Scholar
  12. Hagiwara H, Inoue A, Yamaguchi A, Yokose S, Furuya M, Tanaka S, Hirose S. cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells. Am J Physiol Cell Physiol. 1996;270:C1311–8.Google Scholar
  13. Jaubert J, Jaubert F, Martin N, Washburn LL, Lee BK, Eicher EM, Guenet JL. Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3). Proc Natl Acad Sci USA. 1999;96:10278–83.PubMedCrossRefGoogle Scholar
  14. Jiao Y, Yan J, Jiao F, Yang H, Donahue LR, Li X, Roe BA, Stuart J, Gu W. A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice. BMC Genet. 2007;8:16.PubMedCrossRefGoogle Scholar
  15. Kishimoto I, Tokudome T, Horio T, Soeki T, Chusho H, Nakao K, Kangawa K. C-type natriuretic peptide is a Schwann cell-derived factor for development and function of sensory neurones. J Neuroendocrinol. 2008;20:1213–23.Google Scholar
  16. Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, Prats H, Wilcox WR. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J Cell Sci. 2005;118:5089–100.PubMedCrossRefGoogle Scholar
  17. Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M. Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci USA. 2006;103:4735–40.PubMedCrossRefGoogle Scholar
  18. Loke I, Squire IB, Davies JE, Ng LL. Reference ranges for natriuretic peptides for diagnostic use are dependent on age, gender and heart rate. Eur J Heart Fail. 2003;5:599–606.PubMedCrossRefGoogle Scholar
  19. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA. 1999;96:7403–8.PubMedCrossRefGoogle Scholar
  20. McNeill BA, Barrell GK, Wellby M, Prickett TC, Yandle TG, Espiner EA. C-type natriuretic peptide forms in pregnancy: maternal plasma profiles during ovine gestation correlate with placental and fetal maturation. Endocrinology. 2009;150:4777–83.PubMedCrossRefGoogle Scholar
  21. Moffatt P, Thomas G, Sellin K, Bessette MC, Lafreniere F, Akhouayri O, St-Arnaud R, Lanctot C. Osteocrin is a specific ligand of the natriuretic peptide clearance receptor that modulates bone growth. J Biol Chem. 2007;282:36454–62.PubMedCrossRefGoogle Scholar
  22. Moncla A, Missirian C, Cacciagli P, Balzamo E, Legeai-Mallet L, Jouve JL, Chabrol B, Le Merrer M, Plessis G, Villard L, Philip N. A cluster of translocation breakpoints in 2q37 is associated with overexpression of NPPC in patients with a similar overgrowth phenotype. Hum Mutat. 2007;28:1183–8.PubMedCrossRefGoogle Scholar
  23. Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J. The role of liver-derived insulin-like growth factor-I. Endocr Rev. 2009;30:494–535.PubMedCrossRefGoogle Scholar
  24. Olney RC, Bukulmez H, Bartels CF, Prickett TC, Espiner EA, Potter LR, Warman ML. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J Clin Endocrinol Metab. 2006;91:1229–32.PubMedCrossRefGoogle Scholar
  25. Olney RC, Prickett TC, Yandle TG, Espiner EA, Han JC, Mauras N. Amino-terminal propeptide of C-type natriuretic peptide and linear growth in children: effects of puberty, testosterone and growth hormone. J Clin Endocrinol Metab. 2007;92:4294–8.PubMedCrossRefGoogle Scholar
  26. Olney RC, Permuy JW, Prickett TC, Espiner EA. Amino-terminal C-type natriuretic peptide (NTproCNP) levels in healthy children; a longitudinal study. Proceedings of the Lawson Wilkins Pediatric Endocrine Society/European Society for Pediatric Endocrinology Meeting, New York, NY; 2009a.Google Scholar
  27. Olney RC, Prickett TC, Espiner EA, Arn PH, Upp HLH, Zerah MM, Dietz HC. Is C-type natriuretic peptide (CNP) production elevated in Marfan syndrome? Proceedings of the Lawson Wilkins Pediatric Endocrine Society/European Society for Pediatric Endocrinology Meeting, New York, NY; 2009b.Google Scholar
  28. Palmer SC, Prickett TC, Espiner EA, Yandle TG, Richards AM. Regional release and clearance of C-type natriuretic peptides in the human circulation and relation to cardiac function. Hypertension. 2009;54:612–18.Google Scholar
  29. Pfeifer A, Aszodi A, Seidler U, Ruth P, Hofmann F, Fassler R. Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science. 1996;274:2082–6.PubMedCrossRefGoogle Scholar
  30. Prickett TCR, Yandle TG, Nicholls MG, Espiner EA, Richards AM. Identification of amino-terminal pro-C-type natriuretic peptide in human plasma. Biochem Biophys Res Commun. 2001;286:513–7.PubMedCrossRefGoogle Scholar
  31. Prickett TCR, Kaaja RJ, Nicholls MG, Espiner EA, Richards AM, Yandle TG. N-terminal pro-C-type natriuretic peptide, but not C-type natriuretic peptide, is greatly elevated in the fetal circulation. Clin Sci. 2004a;106:535–40.PubMedCrossRefGoogle Scholar
  32. Prickett T, Yandle T, Espiner E, Barrell G, Richards A. First identification of Aminoterminal C-type natriuretic peptide in growth plates of long bones. 12th International Congress of Endocrinology (Lisbon): 2004b.Google Scholar
  33. Prickett TC, Barrell GK, Wellby M, Yandle TG, Richards AM, Espiner EA. Response of plasma CNP forms to acute anabolic and catabolic interventions in growing lambs. Am J Physiol Endocrinol Metab. 2007a;292:E1395–400.PubMedCrossRefGoogle Scholar
  34. Prickett TC, Rumball CW, Buckley AJ, Bloomfield FH, Yandle TG, Harding JE, Espiner EA. C-type natriuretic peptide forms in the ovine fetal and maternal circulations: evidence for independent regulation and reciprocal response to undernutrition. Endocrinology. 2007b;148:4015–22.PubMedCrossRefGoogle Scholar
  35. Prickett TC, Barrell GK, Wellby M, Yandle TG, Richards AM, Espiner EA. Effect of sex steroids on plasma C-type natriuretic peptide forms: stimulation by oestradiol in lambs and adult sheep. J Endocrinol. 2008a;199:481–7.PubMedCrossRefGoogle Scholar
  36. Prickett TCR, Lynn AM, Barrell GK, Darlow BA, Cameron VA, Espiner EA, Richards AM, Yandle TG. Amino-terminal proCNP: a putative marker of cartilage activity in postnatal growth. Pediatr Res. 2005;58:334–40.PubMedCrossRefGoogle Scholar
  37. Prickett TCR, Dixon B, Frampton C, Yandle TG, Richards AM, Espiner EA, Darlow BA. Plasma aminoterminal pro C-type natriuretic peptide in the neonate: relation to gestational age and post natal linear growth. J Clin Endocrinol Metab. 2008b;93:225–32.PubMedCrossRefGoogle Scholar
  38. Prickett TC, Charles CJ, Yandle TG, Richards AM, Espiner EA. Skeletal contributions to plasma CNP forms: evidence from regional sampling in growing lambs. Peptides. 2009;30:2343–7.Google Scholar
  39. Prickett TCR, Ryan JF, Wellby W, Barrell GK, Yandle TG, Richards AM, Espiner EA. Effect of nutrition on plasma CNP forms in adult sheep; evidence for enhanced CNP degradation during caloric restriction. Metabolism. 2010;59:796–801.Google Scholar
  40. Rauchenzauner M, Schmid A, Heinz-Erian P, Kapelari K, Falkensammer G, Griesmacher A, Finkenstedt G, Hogler W. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92:443–9.PubMedCrossRefGoogle Scholar
  41. Sogawa C, Tsuji T, Shinkai Y, Katayama K, Kunieda T. Short-limbed dwarfism: slw is a new allele of Npr2 causing chondrodysplasia. J Hered. 2007;98:575–80.PubMedCrossRefGoogle Scholar
  42. Southern Reh CM, Azen C, Espiner EA, Olney RC, Prickett TC, May JA, Geffner ME. Plasma CNP forms in prepubertal children with acquired thyroid disease: correlation with thyroid status and height velocity. Proceedings of the Lawson Wilkins Pediatric Endocrine Society/European Society for Pediatric Endocrinology Meeting, New York, NY; 2009.Google Scholar
  43. Suda M, Tanaka K, Fukushima M, Natsui K, Yasoda A, Komatsu Y, Ogawa Y, Itoh H, Nakao K. C-type natriuretic peptide as an autocrine/paracrine regulator of osteoblast. Biochem Biophys Res Commun. 1996;223:1–6.PubMedCrossRefGoogle Scholar
  44. Suda M, Ogawa Y, Tanaka K, Tamura N, Yasoda A, Takigawa T, Uehira M, Nishimoto H, Itoh H, Saito Y, Shiota K, Nakao K. Skeletal overgrowth in transgenic mice that overexpress brain natriuretic peptide. Proc Natl Acad Sci USA. 1998;95:2337–42.PubMedCrossRefGoogle Scholar
  45. Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H. Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Invest. 1992;90:1145–9.PubMedCrossRefGoogle Scholar
  46. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA. 2000;97:4239–44.PubMedCrossRefGoogle Scholar
  47. Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL. Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci USA. 2004;101:17300–5.PubMedCrossRefGoogle Scholar
  48. Tsuji T, Kunieda T. A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem. 2005;280:14288–92.PubMedCrossRefGoogle Scholar
  49. van der Eerden BC, Karperien M, Wit JM. Systemic and local regulation of the growth plate. Endocr Rev. 2003;24:782–801.PubMedCrossRefGoogle Scholar
  50. Woods A, Khan S, Beier F. C-type natriuretic peptide regulates cellular condensation and glycosaminoglycan synthesis during chondrogenesis. Endocrinology. 2007;148:5030–41.PubMedCrossRefGoogle Scholar
  51. Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of pro-C-type natriuretic peptide. J Biol Chem. 2003;278:25847–52.PubMedCrossRefGoogle Scholar
  52. Yamashita Y, Takeshige K, Inoue A, Hirose S, Takamori A, Hagiwara H. Concentration of mRNA for the natriuretic peptide receptor-C in hypertrophic chondrocytes of the fetal mouse tibia. J Biol Chem. 2000;127:177–9.Google Scholar
  53. Yandle TG. Biochemistry of natriuretic peptides. J Intern Med. 1994;235:561–76.PubMedCrossRefGoogle Scholar
  54. Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, Miura M, Kurihara T, Rogi T, Tanaka S, Suda M, Tamura N, Ogawa Y, Nakao K. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med. 2004;10:80–6.PubMedCrossRefGoogle Scholar
  55. Yasoda A, Kitamura H, Fujii T, Kondo E, Murao N, Miura M, Kanamoto N, Komatsu Y, Arai H, Nakao K. Systemic administration of C-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology. 2009;150:3138–44.Google Scholar
  56. Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, Baumann G, Kopchick JJ. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA. 1997;94:13215–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MedicineUniversity of OtagoChristchurchNew Zealand
  2. 2.Department of MedicineUniversity of OtagoChristchurchNew Zealand

Personalised recommendations