Endocrinology of Male and Female Puberty: An Overview

  • Vidhya Viswanathan
  • Peter A. Lee
  • Christopher P. Houk


The complex process of pubertal growth and development requires multiple mediators. This chapter presents recently described molecular mechanisms, such as the kisspeptin–GPR 54 complex, and other factors that govern changes in the level of functioning at the hypothalamic-pituitary-gonadal axis that regulate the complex process of sexual development, reproductive development, and linear growth. The relationship between hypothalamic-pituitary-gonadal hormone secretion and the resultant effects on physical changes and overall growth in puberty are also described. Sex steroids, androgens and estrogens, have both direct and indirect effects on growth. Direct actions include stimulation of the bony growth plate while indirect effects occur via growth hormone and insulin-like growth factor-1. Bone mass accrual, mediated by sex steroids and growth hormone, is maximal at the late stages of puberty after peak height velocity in both sexes. The changes in bone mass accumulation, bone density, and fat and lean body mass that occur during puberty all show distinct sexually dimorphic patterns of development.


Granulosa Cell Growth Hormone Secretion Antral Follicle Secondary Sexual Characteristic GnRH Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Areal bone mineral density




Fibroblast growth factor 1 receptor


Follicle stimulating hormone


Gonadotropin releasing hormone


Insulin-like growth factor-1


Insulin-like factor 3


Luteinizing hormone


Peak bone mass


  1. Apter D, Butzow TL, Laughlin GA, Yen SS. Gonadotropin-releasing hormone pulse generator activity during pubertal transition in girls: pulsatile and diurnal patterns of circulating gonadotropins. J Clin Endocrinol Metab. 1993;76:940–9.PubMedCrossRefGoogle Scholar
  2. Baroncelli GI, Bertelloni S, Ceccarelli C, Saggesse G. Measurement of volumetric bone mineral density accurately determines degree of lumbar undermineralization in children with growth hormone deficiency. J Clin Endocrinol Metab. 1998;83:3150–4.PubMedCrossRefGoogle Scholar
  3. Berkey, CS, Dockery DW, Wang X, Wypij D, Ferris B Jr. Longitudinal height velocity standards for U.S. adolescents. Stat Med. 1993;12:403–14.PubMedCrossRefGoogle Scholar
  4. Buyken AE, Karaolis-Danckert N, Remer T. Association of prepubertal body composition in healthy girls and boys with the timing of early and late pubertal markers. Am J Clin Nutr. 2009;89:221–30.PubMedCrossRefGoogle Scholar
  5. Carrel A, Myers S, Whitman B, Allen D. Growth hormone improves body composition, fat utilization, physical strength and agility, and growth in Prader-Willi syndrome: a controlled study. J Pediatr. 1999;134:215–21.PubMedCrossRefGoogle Scholar
  6. Cheng S, Völgyi E, Tylavsky FA, Lyytikäinen A, Törmäkangas T, Xu L, Cheng SM, Kröger H, Alèn M, Kujala UM. Trait-specific tracking and determinants of body composition: a 7-year follow-up study of pubertal growth in girls. BMC Med. 2009;7:5.PubMedCrossRefGoogle Scholar
  7. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. The influence of pubertal timing on bone mass acquisition: a predetermined trajectory detectable five years before menarche. J Clin Endocrinol Metab. 2009;94:3424–31.PubMedCrossRefGoogle Scholar
  8. Clarke BL, Khosla S. Androgens and bone. Steroids. 2009;74:296–305.PubMedCrossRefGoogle Scholar
  9. Corbier P, Dehennin L, Castanier M, Mebazaa A, Edwards DA, Roffi J. Sex differences in serum luteinizing hormone and testosterone in the human neonate during the first few hours after birth. J Clin Endocrinol Metab. 1990;71:1344–8.PubMedCrossRefGoogle Scholar
  10. Crofton PM, Evans AEM, Wallace AM, Groome NP, Kelnar CJH. Nocturnal secretory dynamics of inhibin B and testosterone in pre- and peripubertal boys. J Clin Endocrinol Metab. 2004;89:867–74.PubMedCrossRefGoogle Scholar
  11. DiVall SA, Radovick S. Endocrinology of female puberty. Curr Opin Endocrinol Diabetes Obes. 2009;16:1–4.PubMedCrossRefGoogle Scholar
  12. Dodé C, Levilliers J, Dupont J, De Paepe A, Le Dû N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pêcheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel J, Delemarre-van de Waal H, Goulet-Salmon B, Kottler M, Richard O, Sanchez-Franco F, Saura R, Young J, Petit C, Jean-Pierre H. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33:463–5.PubMedCrossRefGoogle Scholar
  13. Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Persico MG, Camerino G, Ballabio A. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991;353:529–36.PubMedCrossRefGoogle Scholar
  14. Grumbach MM. The neuroendocrinology of human puberty revisited. Horm Res. 2002;57 Suppl 2:2–14.PubMedCrossRefGoogle Scholar
  15. Hiney JK, Srivastava VK, Pine MD, Dees WL. Insulin-like growth factor-I activates KiSS-1 gene expression in the brain of the prepubertal female rat. Endocrinology. 2009;150:376–84.PubMedCrossRefGoogle Scholar
  16. Houk CP, Kunselman AR, Lee PA. Adequacy of a single unstimulated luteinizing hormone level to diagnose central precocious puberty in girls. Pediatrics. 2009;123:e1059–63.PubMedCrossRefGoogle Scholar
  17. Isidori AM, Giannetta E, Lenzi A. Male hypogonadism. Pituitary. 2008;11:171–80.PubMedCrossRefGoogle Scholar
  18. Iuliano-Burns S, Hopper J, Seeman E. The age of puberty determines sexual dimorphism in bone structure: a male/female co-twin control study. J Clin Endocrinol Metab. 2009;94:1638–43.PubMedCrossRefGoogle Scholar
  19. Knobil E. The hypothalamic gonadotrophic hormone releasing hormone (GnRH) pulse generator in the rhesus monkey and its neuroendocrine control. Hum Reprod. 1988;3:29–31.PubMedGoogle Scholar
  20. Krsmanovic LZ, Hu L, Leung PK, Feng H, Catt KJ. Pulsatile GnRH secretion: Roles of G protein-coupled receptors, second messengers and ion channels. Mol Cell Endocrinol. 2010;314:158–63.PubMedCrossRefGoogle Scholar
  21. Lee, PA. Physiology of puberty. In: Becker KL, editor. Principles and practice of endocrinology and metabolism. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2001, pp. 885–93.Google Scholar
  22. Lewis, K, Lee PA. Endocrinology of male puberty. Curr Opin Endocrinol Diabetes Obes. 2009;16:5–9.PubMedCrossRefGoogle Scholar
  23. Loomba-Albrecht LA, Styne DM. Effect of puberty on body composition. Curr Opin Endocrinol Diabetes Obes. 2009;16:10–5.PubMedCrossRefGoogle Scholar
  24. Matsumoto S, Yamazaki C, Massumoto K, Nagano M, Furuichi K, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y. Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci USA. 2006;103:4140–5.PubMedCrossRefGoogle Scholar
  25. Mauras N, Rinnie A, Welch S, Sager B, Murphy SP. Synergistic effects of testosterone and growth hormone on protein metabolism and body composition in prepubertal boys. Metabolism. 2003;52:964–69.PubMedCrossRefGoogle Scholar
  26. Meinhardt UJ, Ho KKY. Modulation of growth hormone action by sex steroids. Clin Endocrinol. 2006;65:413–22.CrossRefGoogle Scholar
  27. Perry RJ, Farquharson C, Ahmed SF. The role of sex steroids in controlling pubertal growth. Clin Endocrinol (Oxf). 2008;68:4–15.CrossRefGoogle Scholar
  28. Radicioni AF, Anzuini A, De Marco E, Nofroni I, Castracane VD, Lenzi A. Changes in serum inhibin B during normal male puberty. Eur J Endocrinol. 2005;152:403–9.PubMedCrossRefGoogle Scholar
  29. Raz P, Nasatzky E, Ornoy A, Schwartz Z. Sexual dimorphism of growth plate prehypertrophic and hypertrophic chondrocytes in response to testosterone requires metabolism to dihydrotestosterone (DHT) by steroid 5-alpha reductase type 1. J Cell Biochem. 2005;95:108–19.PubMedCrossRefGoogle Scholar
  30. Resende EA, Lara BH, Reis JD, Ferreira BP, Pereira GA, Borges MF. Assessment of basal and gonadotropin-releasing hormone-stimulated gonadotropins by immunochemiluminometric and immunofluorometric assays in normal children. J Clin Endocrinol Metab. 2007;92:1424–9.PubMedCrossRefGoogle Scholar
  31. Rosenfield RL, Lipton RB, Drum ML. Thelarche, pubarche, and menarche attainment in children with normal and elevated body mass index. Pediatrics. 2009;123:84–8.PubMedCrossRefGoogle Scholar
  32. Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Tena-Sempere M, Moenter SM, Terasawa E, Clarke IJ, Steiner RA, Millar RP. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci. 2009;29:3920–9.PubMedCrossRefGoogle Scholar
  33. Rutters F, Nieuwenhuizen AG, Verhoef SP, Lemmens SG, Vogels N, Westerterp-Plantenga MS. The relationship between leptin, gonadotropic hormones, and body composition during puberty in a Dutch children cohort. Eur J Endocrinol. 2009;160:973–8.PubMedCrossRefGoogle Scholar
  34. Saggese G, Baroncelli GI. Puberty and bone development. Best Pract Res Clin Endocrinol Metab. 2002;16:53–64.PubMedCrossRefGoogle Scholar
  35. Sattler FR, Castaneda-Sceppa C, Binder EF, Schroeder ET, Wang Y, Bhasin S, Kawakubo M, Stewart Y, Yarasheski KE, Ulloor J, Colletti P, Roubenoff R, Azen SP. Testosterone and growth hormone improve body composition and muscle performance in older men. J Clin Endocrinol Metab. 2009;94:1991–2001.PubMedCrossRefGoogle Scholar
  36. Schwanzel-Fukuda M, Bick D, Pfaff DW. Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res. 1989;6:311–26.PubMedCrossRefGoogle Scholar
  37. Schwanzel-Fukuda M, Crossin KL, Pfaff DW, Bouloux PMG, Hardelin JP, Petit C. Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol. 1996;366:547–57.PubMedCrossRefGoogle Scholar
  38. Seminara SB, Crowley, Jr WF. Kisspeptin and GPR54: discovery of a novel pathway in reproduction. J Neuroendocrinol. 2008;20:727–31PubMedCrossRefGoogle Scholar
  39. Styne DM, Grumbach MM. Control of puberty in humans. In: Pescovitz OHP, Walvoord EC, editors. When puberty is precocious. Totowa, NJ: Humana Press; 2007. pp. 51–83.CrossRefGoogle Scholar
  40. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev. 2001;22:111–51.PubMedCrossRefGoogle Scholar
  41. Veldhuis JD, Roemmich JN, Rogol AD. Endocrine control of body composition in infancy, childhood, and puberty. J Clin Endocrinol Metab. 2000;85:2385–94.PubMedCrossRefGoogle Scholar
  42. Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, Mauras N, Bowes CY. Gender and sexual maturation-dependent contrasts in the neuroregulation of growth hormone secretion in prepubertal and late adolescent males and females – a general clinical research center-based study. Endocr Rev. 2005;26:114–46.PubMedCrossRefGoogle Scholar
  43. Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21:415–30.PubMedCrossRefGoogle Scholar
  44. Wikstrom AM, Bay K, Hero M, Andersson A, Dunkel L. Serum insulin-like factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J Clin Endocrinol Metab. 2006;91:4705–8.PubMedCrossRefGoogle Scholar
  45. Wolthers T, Hoffman DM, Nugent AG, Duncan MW, Umpleby M, Ho KKY. Oral estrogen antagonizes the metabolic actions of growth hormone in growth hormone-deficient women. Am J Physiol Endocrinol Metab. 2001;281:E1191–6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Vidhya Viswanathan
    • 1
  • Peter A. Lee
    • 1
    • 2
  • Christopher P. Houk
    • 3
  1. 1.Department of Pediatrics, Riley Hospital for ChildrenIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Pediatrics, Penn State College of MedicineThe Milton S. Hershey Medical CenterHersheyUSA
  3. 3.Department of PediatricsMedical College of GeorgiaAugustaUSA

Personalised recommendations