Skip to main content

Habitual Physical Activity and Bone Growth and Development in Children and Adolescents: A Public Health Perspective

  • Chapter
  • First Online:
Handbook of Growth and Growth Monitoring in Health and Disease

Abstract

During the growing years, habitual physical activity contributes to bone strength by increasing bone material mass and improving structure. In fact, the effect of physical activity to bone mass is similar (after puberty) or higher (before the end of puberty) to the effect of the antireabsortive therapy observed in the adult population with osteoporosis. An advantage of physical activity to antireabsortive therapy is that the bone mass increases associated with physical activity usually occur in bone regions that are strategic to bone strength, where the mechanical demands are the greatest, taking into account the structural diversity of the bone. However, in primary school, more than 50% of the children are not sufficiently active to fully achieve this and other health benefits, and the percentage of not sufficiently active youth is even higher in elementary and secondary schools. Throughout the critical growing years, girls have lower levels of physical activity than boys. Efforts should be made to evaluate, educate, and motivate children and adolescents to increase their physical activity, particularly within school settings where they spend so much of their time. All school-based physical activity interventions should be focused not only on obesity prevention (energy expenditure) but also on bone strength (mechanical loading). Activities with a high-intensity mechanical load (activities including jumping), with the duration of 10–15 min per day, 2–3 times a week, or with lower mechanical intensity (activities including jogging and running), 30–40 min per day, everyday, seem to be effective for optimizing bone health. When taking into account other ways in which physical activity impacts health, particularly obesity prevention, children and adolescents should accumulate 60 min per day of physical activity of at least moderate intensity as specified by the World Health Organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMC:

Bone mineral content

BMD:

Bone mineral density

DXA:

Dual-energy x-ray absorptiometry

I max :

Maximum moment of inertia

I min :

Minimum moment of inertia

METs:

Metabolic equivalents

QCT:

Quantitative computed tomography

References

  • Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O'Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO, Jacobs DR Jr, Leon AS. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.

    Article  PubMed  CAS  Google Scholar 

  • Bailey DA, Martin AD, Mckay HA, Whiting S, Mirwald R. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;11:2245–50.

    Article  Google Scholar 

  • Baptista F, Santos DA, Silva AM, Mota J, Santos R, Vale S, Ferreira JP, Raimundo AM, Moreira H, Sardinha LB. Prevalence of the Portuguese population attaining sufficient physical activity. Med Sci Sport Exer. 2011;doi:10.1249/MSS.0b013e318230e441.

    Google Scholar 

  • Baxter-Jones ADG, Kontulainen SA, Faulkner RA, Bailey DA. A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood. Bone. 2008;43:1101–7.

    Article  PubMed  Google Scholar 

  • Blimkie CJ, Rice S, Webber CE, Martin J, Levy D, Gordon CL. Effects of resistance training on bone mineral content and density in adolescent females. Can J Physiol Pharmacol. 1996;74:1025–33.

    Article  PubMed  CAS  Google Scholar 

  • Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E. Changes on bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998;13:1814–21.

    Article  PubMed  CAS  Google Scholar 

  • Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21:1489–95.

    Article  PubMed  Google Scholar 

  • Courteix D, Jaffre C, Lespessailles E, Benhamou L. Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: a double-blind randomised placebo-controlled trial. Int J Sports Med. 2005;26:332–8.

    Article  PubMed  CAS  Google Scholar 

  • Delmas PD, Seeman E. Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone. 2004;34:599–604.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson LJ, Reckless IP, Scholes S, Mindell JS, Shelton NJ. The epidemiology of fractures in England. J Epidemiol Community Health. 2008;62:174–80.

    Article  PubMed  CAS  Google Scholar 

  • Ducher G, Bass SL, Naughton GA, Eser P, Telford RD, Daly RM. Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr. 2009;90:1104–11.

    Article  PubMed  CAS  Google Scholar 

  • Forwood MR, Baxter-Jones, AD, Beck TJ, Mirwald RL, Howard A, Bailey DA. Physical activity and strength of the femoral neck during the adolescent growth spurt: a longitudinal analysis. Bone. 2006;38:576–83.

    Article  PubMed  Google Scholar 

  • Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16:148–56.

    Article  PubMed  CAS  Google Scholar 

  • Groothausen J, Siemer H, Kemper HCG, Twisk J, Welten DC. Influence of peak strain on lumbar bone mineral density: an analysis of 15-year physical activity in young males and females. Pediatr Exerc Sci. 1997;9:159–73.

    Google Scholar 

  • Hasselstrom H, Karlsson KM, Hanse SE, GrØnfeldt K, Froberg K, Anderson LB. Peripheral bone mineral density and different intensities of physical activity in children 6–8 years old: the Copenhagen School Child Intervention study. Calcif Tissue Int. 2007;80:31–8.

    Article  PubMed  CAS  Google Scholar 

  • Heinonen A, Sievanen H, Kannus P, Oja P, Pasanen M, Vuori I. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int. 2000;11:1010–7.

    Article  PubMed  CAS  Google Scholar 

  • Iuliano-Burns S, Saxon L, Naughton G, Gibbons K, Bass SL. Regional specificity of exercise and calcium during skeletal growth in girls: a randomised controlled trial. J Bone Miner Res. 2003;18:156–62.

    Article  PubMed  Google Scholar 

  • Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC, Warren J. Physical activity and bone measures in young children: the Iowa Bone Development Study. Pediatrics. 2001;107:1387–93.

    Article  PubMed  CAS  Google Scholar 

  • Janz KF, Burns TL, Levy SM, Torner JC, Willing MC, Beck TH Gilmore JM, Marshall TA. Everyday activity predicts bone geometry in children: the Iowa Bone Development Study. Med Sci Sports Exerc. 2004;36:1124–31.

    Article  PubMed  Google Scholar 

  • Janz KF, Gilmore JM, Burns TL, Levy SM, Torner JC, Willing MC, Marshal TA. Physical activity augments bone mineral accrual in young children: the Iowa Bone Development Study. J Pediatr. 2006;148:793–9.

    Article  PubMed  Google Scholar 

  • Janz KF, Gilmore JME, Levy SM, Letuvhy EM, Burns TL, Beck TJ. Physical activity and femoral neck bone strength during childhood: the Iowa Bone Development Study. Bone. 2007;4:216–22.

    Article  Google Scholar 

  • Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I. The site-specific effects of long-term unilateral activity on bone mineral density and content. Ann Intern Med. 1995;123:27–31.

    PubMed  CAS  Google Scholar 

  • Linden C, Ahlborg HG, Besjakov J, Gardsell P, Karlsson MK. A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the pediatric osteoporosis prevention (POP) study. J Bone Miner Res. 2006;21:829–35.

    Article  PubMed  Google Scholar 

  • Macdonald HM, Kontulainen SA, Khan KM, McKay HA. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res. 2007;22:434–46.

    Article  PubMed  Google Scholar 

  • Macdonald HM, Kontulainen SA, Petit MA, Beck TJ, Khan KM, McKay HA. Does a novel school-based physical activity model benefit femoral neck bone strength in pre- and early pubertal children? Osteoporos Int. 2008;19:1445–56.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald HM, Cooper DM, McKay HA. Anterior-posterior bending strength at the tibial shaft increases with physical activity in boys: evidence for non-uniform geometric adaptation. Osteoporos Int. 2009;20:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Mackelvie KJ, McKay HA, Khan KM, Crocker PRE. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr. 2001;139:501–8.

    Article  PubMed  CAS  Google Scholar 

  • Mackelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003;112:e447–52.

    Article  PubMed  Google Scholar 

  • Mackelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34:755–64.

    Article  PubMed  Google Scholar 

  • Magaziner J, Lydick E, Hawkes W, Fox KM, Zimmerman SI, Epstein RS, Hebel JR. Excess mortality attributable to hip fracture in white women aged 70 years and older. Am J Public Health. 1997;87:1630–6.

    Article  PubMed  CAS  Google Scholar 

  • McKay HA, Petit MA, Khan KM, Schutz RW. Lifestyle determinants of bone mineral: a comparison between prepubertal Asian- and Caucasian-Canadian boys and girls. Calcif Tissue Int. 2000;66:320–4.

    Article  PubMed  CAS  Google Scholar 

  • McKay H, Tsang G, Heinonen A, MacKelvie K, Sanderson D, Khan K. Ground reaction forces associated with an effective elementary school based jumping intervention. Br J Sports Med. 2005a;39:10–4.

    Article  PubMed  CAS  Google Scholar 

  • McKay HA, MacLean L, Petit M, MacKelvie-O´Brian K, Janssen P, Beck T, Khan KM. “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med. 2005b;39:521–6.

    Article  PubMed  CAS  Google Scholar 

  • Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12:1453–62.

    Article  PubMed  CAS  Google Scholar 

  • Nichols DL, Sanborn CF, Love AM. Resistance training and bone mineral density in adolescent females. J Pediatr. 2001;139:494–500.

    Article  PubMed  CAS  Google Scholar 

  • Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17:363–72.

    Article  PubMed  CAS  Google Scholar 

  • Rauch F, Plotkin H, DiMeglio L, Engelbert RH, Henderson RC, Munns C, Wenkert D, Zeitler P. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2007 pediatric official position. J Clin Densitom. 2008;11:22–8.

    Article  PubMed  Google Scholar 

  • Rubin C, Judex S, Qin YX. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing. 2006;35–S2: ii32–6.

    Article  PubMed  Google Scholar 

  • Sardinha LB, Baptista F, Ekelund U. Objectively measured physical activity and bone strength in 9 year old boys and girls. Pediatrics. 2008;122:e728–36.

    Article  PubMed  Google Scholar 

  • Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols H. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.

    Article  PubMed  CAS  Google Scholar 

  • Specker B, Blinkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18:885–92.

    Article  PubMed  CAS  Google Scholar 

  • Stear SJ, Prentice A, Jones SC, Cole TJ. Effect of a calcium and exercise intervention on the bone mineral status of 16-18-y-old adolescent girls. Am J Clin Nutr. 2003;72:666–74.

    Google Scholar 

  • Tobias JH, Steer C, Mattocks CG, Riddoch C, Ness A. Habitual levels of physical activity influence bone mass in 11-year-old children from the United Kingdom: findings from a large population-based cohort. J Bone Miner Res. 2007;22:101–9.

    Article  PubMed  Google Scholar 

  • Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilerts T, Mcdoweel M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40:181–8.

    PubMed  Google Scholar 

  • Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31:45–50.

    Article  PubMed  Google Scholar 

  • Vainionpää A, Korpelainen R, Vihriälä E, Rinta-Paavola A, Leppäluoto J, Jämsä T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int. 2006;17:455–63.

    Article  PubMed  Google Scholar 

  • Van Langendonck L, Claessens AL, Vlietinck R, Derom C, Beunen G. Influence of weight-bearing exercises on bone acquisition in prepubertal monozygotic female twins: a randomised controlled prospective study. Calcif Tissue Int. 2003;72:666–74.

    Article  PubMed  Google Scholar 

  • WHO. Steps to health – a European framework to promote physical activity for health. Copenhagen: World Health Organization; 2007.

    Google Scholar 

  • Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc. 2000;32:1051–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baptista, F., Janz, K.F. (2012). Habitual Physical Activity and Bone Growth and Development in Children and Adolescents: A Public Health Perspective. In: Preedy, V. (eds) Handbook of Growth and Growth Monitoring in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1795-9_143

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1795-9_143

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1794-2

  • Online ISBN: 978-1-4419-1795-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics