Early-Onset Preeclampsia and HELLP Syndrome: An Overview

  • Nandor Gabor Than
  • Edi Vaisbuch
  • Chong Jai Kim
  • Shali Mazaki-Tovi
  • Offer Erez
  • Lami Yeo
  • Pooja Mittal
  • Petronella Hupuczi
  • Tibor Varkonyi
  • Sonia S. Hassan
  • Zoltan Papp
  • Roberto Romero


Preeclampsia, one of the “great obstetrical syndromes,” affects ~3–5% of pregnancies and is a major cause of maternal and perinatal morbidity and mortality. Preeclampsia is diagnosed after 20 weeks of gestation and is characterized by new-onset hypertension and proteinuria in previously normotensive women, which may deteriorate into maternal multiorgan damage affecting the kidneys, liver and central nervous system. This multisystem disorder is unique to human pregnancy and is the clinical manifestation of heterogeneous pathological processes. The placenta plays a key role in the underlying mechanisms leading to the development of preeclampsia as the only definitive treatment today remains delivery. Early-onset preeclampsia often has severe maternal and foetal consequences including intrauterine growth restriction, preterm delivery, low or very low birth weight, increased perinatal morbidity and mortality and a high incidence of the life-threatening HELLP syndrome, while the clinical presentation of late-onset preeclampsia is frequently mild, resulting mainly in maternal consequences. Of further importance, pregnant women with severe forms of preeclampsia and their growth-restricted foetuses are at an increased risk for developing cardiovascular disease later in life. Here we review the literature on the epidemiology, risk factors, pathophysiology, maternal and perinatal outcomes, diagnosis and management of early-onset preeclampsia and HELLP syndrome and summarize how these severe pregnancy complications are related to foetal growth and health.


Uterine Artery Expectant Management HELLP Syndrome Severe Preeclampsia Spiral Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A disintegrin and metalloproteinase domain 12


Appropriate-for-gestational age


Human chorionic gonadotropin beta subunit


Body mass index


Cell-free foetal DNA


Disseminated intravascular coagulation


Foetal growth restriction


Human leukocyte antigen


Haemolysis, elevated liver enzymes, low platelets syndrome


Intrauterine foetal death


Intrauterine growth restriction


Intraventricular haemorrhage


Killer-cell immunoglobulin-like receptors


Large-for-gestational age


Neonatal intensive care unit


Natural killer cell


Nitric oxide


Pregnancy-associated plasma protein A


Placenta growth factor


Placental Protein 13


Retinol-binding protein 4


Respiratory distress syndrome


Reactive oxygen species


Soluble endoglin


Small-for-gestational age


Soluble receptor for vascular endothelial growth factor-1


Tumour necrosis factor-α


Vascular endothelial growth factor



This work was supported in part by the Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS. Figure 113.2 was adapted from and used with permission by Romero et al. (2008).


  1. ACOG. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol. 2002;99:159–67.CrossRefGoogle Scholar
  2. Ananth CV, Peltier MR, Chavez MR, Kirby RS, Getahun D, Vintzileos AM. Recurrence of ischemic placental disease. Obstet Gynecol. 2007;110:128–33.PubMedCrossRefGoogle Scholar
  3. Balogh A, Pozsgay J, Matko J, Dong Z, Kim CJ, Varkonyi T, Sammar M, Rigo J Jr, Meiri H, Romero R, Papp Z, Than NG. Placental Protein 13 (PP13/galectin-13) undergoes lipid raft-associated subcellular redistribution in the syncytiotrophoblast in preterm preeclampsia and HELLP syndrome. Am J Obstet Gynecol. 2011. doi:10.1016/j.ajog.2011.03.023.Google Scholar
  4. Barker DJ. Fetal nutrition and cardiovascular disease in later life. Br Med Bull. 1997;53:96–108.PubMedCrossRefGoogle Scholar
  5. Barton JR, Sibai BM. Diagnosis and management of hemolysis, elevated liver enzymes, and low platelets syndrome. Clin Perinatol. 2004;31:807–33, vii.PubMedCrossRefGoogle Scholar
  6. Baumwell S, Karumanchi SA. Pre-eclampsia: clinical manifestations and molecular mechanisms. Nephron Clin Pract. 2007;106:c72–81.PubMedCrossRefGoogle Scholar
  7. Baxter JK, Weinstein L. HELLP syndrome: the state of the art. Obstet Gynecol Surv. 2004;59:838–45.PubMedCrossRefGoogle Scholar
  8. Briana DD, Malamitsi-Puchner A. Reviews: adipocytokines in normal and complicated pregnancies. Reprod Sci. 2009;16:921–37.PubMedCrossRefGoogle Scholar
  9. Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009a;30:473–82.PubMedCrossRefGoogle Scholar
  10. Burton GJ, Yung HW, Cindrova-Davies T, Charnock-Jones DS. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta. 2009b;30(Suppl A):S43–8.PubMedCrossRefGoogle Scholar
  11. Chaiworapongsa T, Romero R, Kusanovic JP, Mittal P, Kim SK, Gotsch F, Than NG, Mazaki-Tovi S, Vaisbuch E, Erez O, Yeo L, Hassan SS, Sorokin Y. Plasma soluble endoglin concentration in pre-eclampsia is associated with an increased impedance to flow in the maternal and fetal circulations. Ultrasound Obstet Gynecol. 2010;35:155–62.PubMedCrossRefGoogle Scholar
  12. Conde-Agudelo A, Villar J, Lindheimer M. World Health Organization systematic review of screening tests for preeclampsia. Obstet Gynecol. 2004;104:1367–91.PubMedCrossRefGoogle Scholar
  13. Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352:2477–86.PubMedCrossRefGoogle Scholar
  14. Dashe JS, McIntire DD, Lucas MJ, Leveno KJ. Effects of symmetric and asymmetric fetal growth on pregnancy outcomes. Obstet Gynecol. 2000;96:321–7.PubMedCrossRefGoogle Scholar
  15. Di Renzo GC. The great obstetrical syndromes. J Matern Fetal Neonatal Med. 2009;22:633–5.PubMedCrossRefGoogle Scholar
  16. Divon MY, Ferber A. Umbilical artery Doppler velocimetry – an update. Semin Perinatol. 2001;25:44–7.PubMedCrossRefGoogle Scholar
  17. Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.PubMedCrossRefGoogle Scholar
  18. Erez O, Romero R, Espinoza J, Fu W, Todem D, Kusanovic JP, Gotsch F, Edwin S, Nien JK, Chaiworapongsa T, Mittal P, Mazaki-Tovi S, Than NG, Gomez R, Hassan SS. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J Matern Fetal Neonatal Med. 2008a;21:279–87.PubMedCrossRefGoogle Scholar
  19. Erez O, Romero R, Hoppensteadt D, Than NG, Fareed J, Mazaki-Tovi S, Espinoza J, Chaiworapongsa T, Kim SS, Yoon BH, Hassan SS, Gotsch F, Friel L, Vaisbuch E, Kusanovic JP. Tissue factor and its natural inhibitor in pre-eclampsia and SGA. J Matern Fetal Neonatal Med. 2008b;21:855–69.PubMedCrossRefGoogle Scholar
  20. Espinoza J, Romero R, Kim YM, Kusanovic JP, Hassan S, Erez O, Gotsch F, Than NG, Papp Z, Kim CJ. Normal and abnormal transformation of the spiral arteries during pregnancy. J Perinat Med. 2006;34:447–58.PubMedCrossRefGoogle Scholar
  21. Gervasi MT, Chaiworapongsa T, Pacora P, Naccasha N, Yoon BH, Maymon E, Romero R. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol. 2001;185:792–7.PubMedCrossRefGoogle Scholar
  22. Grill S, Rusterholz C, Zanetti-Dallenbach R, Tercanli S, Holzgreve W, Hahn S, Lapaire O. Potential markers of preeclampsia – a review. Reprod Biol Endocrinol. 2009;7:70.PubMedCrossRefGoogle Scholar
  23. Haram K, Svendsen E, Abildgaard U. The HELLP syndrome: clinical issues and management. BMC Pregnancy Childbirth. 2009;9:8.PubMedCrossRefGoogle Scholar
  24. Hupuczi P, Rigo B, Sziller I, Szabo G, Szigeti Z, Papp Z. Follow-up analysis of pregnancies complicated by HELLP syndrome. Fetal Diagn Ther. 2006;21:519–22.PubMedCrossRefGoogle Scholar
  25. Irani RA, Xia Y. The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta. 2008;29:763–71.PubMedCrossRefGoogle Scholar
  26. Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ. 2001;323:1213–7.PubMedCrossRefGoogle Scholar
  27. Khong TY, De WF, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93:1049–59.PubMedCrossRefGoogle Scholar
  28. Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, Casey B, Wapner RJ, Varner MW, Rouse DJ, Thorp JM Jr, Sciscione A, Catalano P, Harper M, Saade G, Lain KY, Sorokin Y, Peaceman AM, Tolosa JE, Anderson GB. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med. 2009;361:1339–48.PubMedCrossRefGoogle Scholar
  29. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, Sibai BM, Epstein FH, Romero R, Thadhani R, Karumanchi SA. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355:992–1005.PubMedCrossRefGoogle Scholar
  30. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350:672–83.PubMedCrossRefGoogle Scholar
  31. Lindheimer MD, Kanter D. Interpreting abnormal proteinuria in pregnancy: the need for a more pathophysiological approach. Obstet Gynecol. 2010;115:365–75.PubMedCrossRefGoogle Scholar
  32. Magee LA, Yong PJ, Espinosa V, Cote AM, Chen I, von DP. Expectant management of severe preeclampsia remote from term: a structured systematic review. Hypertens Pregnancy. 2009;28:312–47.PubMedCrossRefGoogle Scholar
  33. Matthys LA, Coppage KH, Lambers DS, Barton JR, Sibai BM. Delayed postpartum preeclampsia: an experience of 151 cases. Am J Obstet Gynecol. 2004;190:1464–6.PubMedCrossRefGoogle Scholar
  34. Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta. 2004;25:127–39.PubMedCrossRefGoogle Scholar
  35. Mayhew TM, Ohadike C, Baker PN, Crocker IP, Mitchell C, Ong SS. Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta. 2003;24:219–26.PubMedCrossRefGoogle Scholar
  36. Maynard S, Epstein FH, Karumanchi SA. Preeclampsia and angiogenic imbalance. Annu Rev Med. 2008;59:61–78.PubMedCrossRefGoogle Scholar
  37. Mazaki-Tovi S, Kanety H, Sivan E. Adiponectin and human pregnancy. Curr Diab Rep. 2005;5:278–81.PubMedCrossRefGoogle Scholar
  38. Moffett A, Loke C. Immunology of placentation in eutherian mammals. Nat Rev Immunol. 2006;6:584–94.PubMedCrossRefGoogle Scholar
  39. Moldenhauer JS, Stanek J, Warshak C, Khoury J, Sibai B. The frequency and severity of placental findings in women with preeclampsia are gestational age dependent. Am J Obstet Gynecol. 2003;189:1173–7.PubMedCrossRefGoogle Scholar
  40. National High Blood Pressure Education Program Working Group. Report of the National High Blood Pressure Education Program Working Group on high blood pressure in pregnancy. Am J Obstet Gynecol. 2000;183:S1–22.CrossRefGoogle Scholar
  41. Ness RB, Roberts JM. Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol. 1996;175:1365–70.PubMedCrossRefGoogle Scholar
  42. Ness RB, Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol. 2006;195:40–9.PubMedCrossRefGoogle Scholar
  43. Nishizawa H, Pryor-Koishi K, Kato T, Kowa H, Kurahashi H, Udagawa Y. Microarray analysis of differentially expressed fetal genes in placental tissue derived from early and late onset severe pre-eclampsia. Placenta. 2007;28:487–97.PubMedCrossRefGoogle Scholar
  44. Noris M, Perico N, Remuzzi G. Mechanisms of disease: pre-eclampsia. Nat Clin Pract Nephrol. 2005;1:98–114.PubMedCrossRefGoogle Scholar
  45. Papageorghiou AT, Campbell S. First trimester screening for preeclampsia. Curr Opin Obstet Gynecol. 2006;18:594–600.PubMedCrossRefGoogle Scholar
  46. Piper JM, Langer O, Xenakis EM, McFarland M, Elliott BD, Berkus MD. Perinatal outcome in growth-restricted fetuses: do hypertensive and normotensive pregnancies differ? Obstet Gynecol. 1996;88:194–9.PubMedCrossRefGoogle Scholar
  47. Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Lancet. 2006;367:1145–54.PubMedCrossRefGoogle Scholar
  48. Pritchard JA, Weisman R Jr, Ratnoff OD, Vosburgh GJ. Intravascular hemolysis, thrombocytopenia and other hematologic abnormalities associated with severe toxemia of pregnancy. N Engl J Med. 1954;250:89–98.PubMedCrossRefGoogle Scholar
  49. Ramsay JE, Stewart F, Greer IA, Sattar N. Microvascular dysfunction: a link between pre-eclampsia and maternal coronary heart disease. BJOG. 2003;110:1029–31.PubMedCrossRefGoogle Scholar
  50. Rasmussen S, Irgens LM. Fetal growth and body proportion in preeclampsia. Obstet Gynecol. 2003;101:575–83.PubMedCrossRefGoogle Scholar
  51. Rath W, Faridi A, Dudenhausen JW. HELLP syndrome. J Perinat Med. 2000;28:249–60.PubMedCrossRefGoogle Scholar
  52. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308:1592–4.PubMedCrossRefGoogle Scholar
  53. Redman CW, Sargent IL. Placental stress and pre-eclampsia: a revised view. Placenta. 2009;30(Suppl A):S38–42.PubMedCrossRefGoogle Scholar
  54. Roberts JM, Hubel CA. Recent insights into the pathogenesis of pre-eclampsia. Placenta. 2009;30(Suppl A):S32–7.PubMedCrossRefGoogle Scholar
  55. Roberts JM, Lain KY. The two stage model of preeclampsia: variations on the theme. Placenta. 2002;23:359–72.PubMedCrossRefGoogle Scholar
  56. Romero R. Prenatal medicine: the child is the father of the man. Prenat Neonatal Med. 1996;1:8–11.Google Scholar
  57. Romero R, Mazor M, Lockwood CJ, Emamian M, Belanger KP, Hobbins JC, Duffy T. Clinical significance, prevalence, and natural history of thrombocytopenia in pregnancy-induced hypertension. Am J Perinatol. 1989;6:32–8.PubMedCrossRefGoogle Scholar
  58. Romero R, Nien JK, Espinoza J, Todem D, Fu W, Chung H, Kusanovic JP, Gotsch F, Erez O, Mazaki-Tovi S, Gomez R, Edwin S, Chaiworapongsa T, Levine RJ, Karumanchi SA. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 2008;21:9–23.PubMedCrossRefGoogle Scholar
  59. Romero R, Vizoso J, Emamian M, Duffy T, Riely C, Halford T, Oyarzun E, Naftolin F, Hobbins JC. Clinical significance of liver dysfunction in pregnancy-induced hypertension. Am J Perinatol. 1988;5:146–51.PubMedCrossRefGoogle Scholar
  60. Romero R, Kusanovic JP, Than NG, Erez O, Gotsch F, Espinoza J, Edwin S, Chefetz I, Gomez R, Nien JK, Sammar M, Pineles B, Hassan SS, Meiri H, Tal Y, Kuhnreich I, Papp Z, Cuckle HS. First-trimester maternal serum PP13 in the risk assessment for preeclampsia. Am J Obstet Gynecol. 2008b;199:122.PubMedCrossRefGoogle Scholar
  61. Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS. Endothelial damage provoked by toxic oxygen radicals released from complement-triggered granulocytes. Prog Clin Biol Res. 1978;21:719–26.PubMedGoogle Scholar
  62. Said J, Dekker G. Pre-eclampsia and thrombophilia. Best Pract Res Clin Obstet Gynaecol. 2003;17:441–58.PubMedCrossRefGoogle Scholar
  63. Salafia CM, Minior VK, Pezzullo JC, Popek EJ, Rosenkrantz TS, Vintzileos AM. Intrauterine growth restriction in infants of less than thirty-two weeks’ gestation: associated placental pathologic features. Am J Obstet Gynecol. 1995;173:1049–57.PubMedCrossRefGoogle Scholar
  64. Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ. 2002;325:157–60.PubMedCrossRefGoogle Scholar
  65. Sebire NJ, Goldin RD, Regan L. Term preeclampsia is associated with minimal histopathological placental features regardless of clinical severity. J Obstet Gynaecol. 2005;25:117–8.PubMedCrossRefGoogle Scholar
  66. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365:785–99.PubMedGoogle Scholar
  67. Sibai BM, Ewell M, Levine RJ, Klebanoff MA, Esterlitz J, Catalano PM, Goldenberg RL, Joffe G. Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am J Obstet Gynecol. 1997;177:1003–10.PubMedCrossRefGoogle Scholar
  68. Sibley CP, Turner MA, Cetin I, Ayuk P, Boyd CA, D’Souza SW, Glazier JD, Greenwood SL, Jansson T, Powell T. Placental phenotypes of intrauterine growth. Pediatr Res. 2005;58:827–32.PubMedCrossRefGoogle Scholar
  69. Smulian J, Shen-Schwarz S, Scorza W, Kinzler W, Vintzileos A. A clinicohistopathologic comparison between HELLP syndrome and severe preeclampsia. J Matern Fetal Neonatal Med. 2004;16:287–93.PubMedCrossRefGoogle Scholar
  70. Than NG, Romero R, Goodman M, Weckle A, Xing J, Dong Z, Xu Y, Tarquini F, Szilagyi A, Gal P, Hou Z, Tarca AL, Kim CJ, Kim JS, Haidarian S, Uddin M, Bohn H, Benirschke K, Santolaya-Forgas J, Grossman LI. A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci USA. 2009;106:9731–36.PubMedCrossRefGoogle Scholar
  71. Than NG, Romero R, Hillermann R, Cozzi V, Nie G, Huppertz B. Prediction of preeclampsia - a workshop report. Placenta. 2008;29(Suppl A):S83–5.PubMedCrossRefGoogle Scholar
  72. Than NG, Abdul RO, Magenheim R, Nagy B, Fule T, Hargitai B, Sammar M, Hupuczi P, Tarca AL, Szabo G, Kovalszky I, Meiri H, Sziller I, Rigo J Jr, Romero R, Papp Z. Placental Protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm pre-eclampsia and HELLP syndrome. Virchows Arch. 2008b;453:387–400.PubMedCrossRefGoogle Scholar
  73. Vaisbuch E, Romero R, Mazaki-Tovi S, Erez O, Kim SK, Chaiworapongsa T, Gotsch F, Than NG, Dong Z, Pacora P, Lamont R, Yeo L, Hassan SS, Kusanovic JP. Retinol binding protein 4 – a novel association with early-onset preeclampsia. J Perinat Med. 2010;38:129–39.PubMedCrossRefGoogle Scholar
  74. Varkonyi T, Nagy B, Fule T, Tarca AL, Karaszi K, Schonleber J, Hupuczi P, Mihalik N, Kovalszky I, Rigo J Jr, Meiri H, Papp Z, Romero R, Than NG. Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar. Placenta. 2011;32(Suppl):S21–9.PubMedCrossRefGoogle Scholar
  75. Villar J, Carroli G, Wojdyla D, Abalos E, Giordano D, Ba’aqeel H, Farnot U, Bergsjo P, Bakketeig L, Lumbiganon P, Campodonico L, Al-Mazrou Y, Lindheimer M, Kramer M. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol. 2006;194:921–31.PubMedCrossRefGoogle Scholar
  76. von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy. 2003;22:143–8.CrossRefGoogle Scholar
  77. von Dadelszen P, Menzies JM, Payne B, Magee LA. Predicting adverse outcomes in women with severe pre-eclampsia. Semin Perinatol. 2009;33:152–7.CrossRefGoogle Scholar
  78. Webster RP, Roberts VH, Myatt L. Protein nitration in placenta – functional significance. Placenta. 2008;29:985–94.PubMedCrossRefGoogle Scholar
  79. Weinstein L. Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am J Obstet Gynecol. 1982;142:159–67.PubMedGoogle Scholar
  80. WHO. The world health report 2005: make every mother and child count. Geneva: WHO; 2005.Google Scholar
  81. Xiong X, Demianczuk NN, Saunders LD, Wang FL, Fraser WD. Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am J Epidemiol. 2002;155:203–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nandor Gabor Than
    • 1
  • Edi Vaisbuch
    • 1
  • Chong Jai Kim
    • 1
  • Shali Mazaki-Tovi
    • 5
  • Offer Erez
    • 1
    • 2
  • Lami Yeo
    • 1
  • Pooja Mittal
    • 1
  • Petronella Hupuczi
    • 3
  • Tibor Varkonyi
    • 4
  • Sonia S. Hassan
    • 1
  • Zoltan Papp
    • 4
  • Roberto Romero
    • 1
  1. 1.Perinatology Research Branch, NICHD/NIH/DHHS, Wayne State UniversityDetroitUSA
  2. 2.Department of Obstetrics and Gynecology “B”, Faculty of Health SciencesSoroka University Medical Center, Ben Gurion University of the NegevBeer ShevaIsrael
  3. 3.Department of Anaesthesiology and Intensive TherapySemmelweis UniversityBudapestHungary
  4. 4.1st Department of Obstetrics and GynaecologySemmelweis UniversityBudapestHungary
  5. 5.Perinatology Research Branch, NICHD/NIH/DHHS, Wayne State UniversityDetroitUSA

Personalised recommendations