Growth Monitoring on Psychotropic Medication



Psychotropic medications are often associated with changes in appetite. This may be because brain centers involved with motivation and reward influence both appetite and behavior. For example, stimulant medications enhance the effect of dopamine on the striatal dopamine D2 receptors and suppress the appetite. Antipsychotics are associated with obesity, binding with the D2 receptors so that fewer are available for activation by dopamine. For both classes of drug the effects on appetite often seem to correlate with the therapeutic effects, suggesting a closely related mechanisms or even a common pathway for aspects of behavior and appetite. Changes in appetite lead to changes in the rate of weight gain with secondary effects on the rate of growth in height. Changes in the rate of physical development would also be anticipated. If medication is continued, the rate of weight gain normalizes and a new equilibrium of normal growth rate for height and weight is reached. This takes about 3 years for stimulant medication. In the treatment of ADHD it is important to adjust the dose of stimulant medication to get an optimal therapeutic response. Titrating the dose to the therapeutic response ensures that stimulant toxicity is uncommon and addiction and psychosis extremely rare. The correlation between appetite suppression and a therapeutic response can be helpful as an additional guide for dosage adjustment. This correlation could also be applied to the use of stimulant medication in the treatment of obesity because the dose could be adjusted according to behavioral outcomes rather than continually being raised to increase the weight loss.


Attention Deficit Hyperactivity Disorder Psychotropic Medication Antipsychotic Medication Stimulant Medication Pubertal Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Attention deficit hyperactivity disorder


Body mass index


Centers for Disease Control and Prevention


Dopamine receptor subtype 2


  1. Biederman J, Faraone SV, Monuteaux MC, Plunkett EA, Gifford J, Spencer T. Pediatrics. 2003;111:1010–6.PubMedCrossRefGoogle Scholar
  2. Calarge CA, Acion L, Kuperman S, Tansey M, Schlechte JA. J Child Adolesc Psychopharmacol. 2009;19:101–9.PubMedCrossRefGoogle Scholar
  3. Dunbar F, Kusumakar V, Daneman D, Schulz M. Am J Psychiatry. 2004;161:918–20.PubMedCrossRefGoogle Scholar
  4. Faraone SV, Biederman J, Monuteaux M, Spencer T. J Child Adolesc Psychopharmacol. 2005;15:191–202.PubMedCrossRefGoogle Scholar
  5. Faraone SV, Biederman J, Morley CP, Spencer TJ. J Am Acad Child Adolesc Psychiatry. 2008;47:994–1009.PubMedGoogle Scholar
  6. Greenhill LL, Abikoff HB, Arnold LE, Cantwell DP, Conners CK, Elliott G, Hechtman L, Hinshaw SP, Hoza B, Jensen PS, March JS, Newcorn J, Pelham WE, Severe JB, Swanson JM, Vitiello B, Wells K. J Am Acad Child Adolesc Psychiatry. 1996;35:1304–13.PubMedCrossRefGoogle Scholar
  7. Haas M, Karcher K, Pandina GJ. J Child Adolesc Psychopharmacol. 2008;18:337–45.PubMedCrossRefGoogle Scholar
  8. Hamill PV, Drizd TA, Johnson CL, Reed RB, Roche AF, Moore WM. Am J Clin Nutr. 1979;32:607–29.PubMedGoogle Scholar
  9. Hechtman L, Weiss G, Perlman T. Can Med Assoc J. 1978;118:1247–50.PubMedGoogle Scholar
  10. Kaffman M, Sher A, Bar-Sinai N. Isr Ann Psychiatr Relat Discip. 1979;17:58–66.PubMedGoogle Scholar
  11. Kiloh LG, Brandon S. Br Med J. 1962;2:40–3.PubMedCrossRefGoogle Scholar
  12. Kramer JR, Loney J, Ponto LB, Roberts MA, Grossman S. J Am Acad Child Adolesc Psychiatry. 2000;39:517–24.PubMedCrossRefGoogle Scholar
  13. Kuczmarski RJ, Ogden CL, Guo L, Grummer-Strawn L, Flegal K, Mei Z, Wei R, Curtin L, Roche A, Johnson C. Vit Health Stat. 2000;11:1–201.Google Scholar
  14. Leadbetter R, Shutty M, Pavalonis D, Vieweg V, Higgins P, Downs M. Am J Psychiatry. 1992;149:68–72.PubMedGoogle Scholar
  15. Lindsay RL, Leone S, Aman MG. Clin Pediatr. 2004;43:437–44.CrossRefGoogle Scholar
  16. Lisska MC, Rivkees SA. J Pediatr Endocrinol Metab. 2003;16:711–8.PubMedCrossRefGoogle Scholar
  17. Madras BK, Miller GM, Fischman AJ. Biol Psychiatry. 2005;57:1397–409.PubMedCrossRefGoogle Scholar
  18. McGee R, Birkbeck J, Silva PA. Dev Med Child Neurol. 1985;27:364–8.PubMedCrossRefGoogle Scholar
  19. Poulton A. Arch Dis Child. 2005;90:801–6.PubMedCrossRefGoogle Scholar
  20. Poulton A. Curr Opin Pediatr. 2006;18:427–34.PubMedCrossRefGoogle Scholar
  21. Poulton A, Cowell CT. J Paediatr Child Health. 2003;39:180–5.PubMedCrossRefGoogle Scholar
  22. Poulton A, Melzer E. Arch Dis Child. 2007;92:A13–5.Google Scholar
  23. Poulton A, Nanan R. J Am Acad Child Adolesc Psychiatry. 2009;48:574–6.PubMedCrossRefGoogle Scholar
  24. Poulton AS, Nanan R. J Child Adolesc Psychopharmacol. 2008;18:385–7.PubMedCrossRefGoogle Scholar
  25. Spencer TJ, Biederman J, Harding M, O’Donnell D, Faraone SV, Wilens TE. J Am Acad Child Adolesc Psychiatry. 1996;35:1460–9.PubMedCrossRefGoogle Scholar
  26. Strange PG. Pharmacol Rev. 2001;53:119–33.PubMedGoogle Scholar
  27. Swanson J, Greenhill L, Wigal T, Kollins S, Stehli A, Davies M, Chuang S, Vitiello B, Skrobala A, Posner K, Abikoff H, Oatis M, McCracken J, McGough J, Riddle M, Ghuman J, Cunningham C, Wigal S. J Am Acad Child Adolesc Psychiatry. 2006;45:1304–13.PubMedCrossRefGoogle Scholar
  28. Vanina Y, Podolskaya A, Sedky K, Shahab H, Siddiqui A, Munshi F, Lippmann S. Psychiatr Serv. 2002;53:842–7.PubMedCrossRefGoogle Scholar
  29. Volkow ND, Wang GJ, Fowler JS, Telang F. Philos Trans R Soc Lond B Biol Sci. 2008;363:3191–200.PubMedCrossRefGoogle Scholar
  30. Woods SC, D’Alessio DA. J Clin Endocrinol Metab. 2008;93:S37–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Paediatrics, Sydney Medical School Nepean, The University of SydneySydneyAustralia

Personalised recommendations