Sex Chromosome Aneuploidy and Anthropometry

  • Lise Aksglaede
  • Niels Erik Skakkebæk
  • Anders Juul


Human growth is a highly complicated process influenced by genetic, hormonal, environmental, dietary, metabolic and socioeconomic factors. Although the interaction between sex steroids and the growth hormone (GH)-IGF-axis is of major importance in regulating growth, multiple genetic factors, including genes located on the sex chromosomes play independent roles. Sex chromosome aneuploidy is the most common chromosome disorder in humans, with an incidence of 1 in 400 newborns. The most frequent type of aneuploidy involve the addition or deletion of an X or Y chromosome resulting in a 47,XXX, 45,X, 47,XXY or 47,XYY karyotype. The clinical and behavioural characteristics of these conditions are relatively well described in the literature, whereas, the addition of more than one extra sex chromosome is rare and relevant clinical information is limited. Sex chromosome aneuploidies have a high but varying impact on normal growth, and disorders of growth may be the first or only symptom of an underlying genetic disorder. Interestingly, the presence of supernumerary sex chromosomes affects growth in a dimorphic pattern indicating that genes on the X and the Y chromosome affect height in a different manner.


Head Circumference Final Height Klinefelter Syndrome Testosterone Undecanoate Klinefelter Syndrome Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Follicle stimulating hormone


Klinefelter syndrome


Luteinizing hormone


Insulin like growth factor I


Insulin like growth factor binding protein 3


Standard deviation score


Short stature homeobox containing gene


Sex determining region of the Y chromosome




  1. Aksglaede L, Molgaard C, Skakkebaek NE, Juul A. Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter syndrome. Arch Dis Child. 2008a;93:30–4.PubMedCrossRefGoogle Scholar
  2. Aksglaede L, Skakkebaek NE, Juul A. Abnormal Sex Chromosome Constitution and Longitudinal Growth: Serum Levels of Insulin-Like Growth Factor (IGF)-I, IGF Binding Protein-3, Luteinizing Hormone, and Testosterone in 109 Males with 47,XXY, 47,XYY, or Sex-Determining Region of the Y Chromosome (SRY)-Positive 46,XX Karyotypes. J Clin Endocrinol Metab. 2008b;93:169–76.PubMedCrossRefGoogle Scholar
  3. Andersen E, Hutchings B, Jansen J, Nyholm M. Heights and weights of Danish children. Ugeskr Laeger. 1982;144:1760–5.PubMedGoogle Scholar
  4. Bojesen A, Juul S, Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88:622–6.PubMedCrossRefGoogle Scholar
  5. Bojesen A, Juul S, Birkebaek NH, Gravholt CH. Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab. 2006a;91:1254–60.PubMedCrossRefGoogle Scholar
  6. Bojesen A, Kristensen K, Birkebaek NH, Fedder J, Mosekilde L, Bennett P, Laurberg P, Frystyk J, Flyvbjerg A, Christiansen JS, Gravholt CH. The Metabolic Syndrome Is Frequent in Klinefelter’s Syndrome and Is Associated With Abdominal Obesity and Hypogonadism. Diabetes Care. 2006b;29:1591–8.PubMedCrossRefGoogle Scholar
  7. Geerts M, Steyaert J, Fryns JP. The XYY syndrome: a follow-up study on 38 boys. Genet Couns. 2003;14:267–79.PubMedGoogle Scholar
  8. Horowitz M, Wishart JM, O’Loughlin PD, Morris HA, Need AG, Nordin BE. Osteoporosis and Klinefelter’s syndrome. Clin Endocrinol (Oxf). 1992;36:113–8.CrossRefGoogle Scholar
  9. Jacobs PA, Strong JA. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature. 1959;183:302–3.PubMedCrossRefGoogle Scholar
  10. Jones KL. XXX and XXXX syndromes. In: Smith’s recognizable patterns of human malformation. 5th edition. Philadelphia: Saunders; 1997. p. 78–9.Google Scholar
  11. Karlberg J, Albertsson-Wikland K, Nilsson KO, Ritzen EM, Westphal O. Growth in infancy and childhood in girls with Turner’s syndrome. Acta Paediatr Scand. 1991;80:1158–65.PubMedCrossRefGoogle Scholar
  12. Klinefelter HF. Syndrome Characterized by Gynecomastia, Aspermatogenesis without A-Leydigism, and Increased Excretion of Follicle-Stimulating Hormone. EC Reifenstein, F Albright. J Clin Endocrinol. 1942;2:615–27.CrossRefGoogle Scholar
  13. Kübler A, Schulz G, Cordes U, Beyer J, Krause U. The influence of testosterone substitution on bone mineral density in patients with Klinefelter’s syndrome. Exp Clin Endocrinol. 1992;100:129–32.PubMedCrossRefGoogle Scholar
  14. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet. 2004;364:273–83.PubMedCrossRefGoogle Scholar
  15. Linden MG, Bender BG, Harmon RJ, Mrazek DA, Robinson A. 47,XXX: what is the prognosis? Pediatrics. 1988;82:619–30.PubMedGoogle Scholar
  16. Munns CJ, Haase HR, Crowther LM, Hayes MT, Blaschke R, Rappold G, Glass IA, Batch JA. Expression of SHOX in human fetal and childhood growth plate. J Clin Endocrinol Metab. 2004;89:4130–5.PubMedCrossRefGoogle Scholar
  17. Otter M, Schrander-Stumpel CT, Curfs LM. Triple X syndrome: a review of the literature. Eur J Hum Genet. 2010;18(3):265–71.Google Scholar
  18. Ottesen AM, Aksglaede L, Garn I, Tartaglia N, Tassone F, Gravholt CH, Bojesen A, Sørensen K, Jørgensen N, Rajpert-De Meyts E, Gerdes T, Lind A-M, Kjaergaard S, Juul A., Increased Number of Sex Chromosomes Affects Height in a Non Linear Fashion: A Study of 305 Patients with Sex Chromosome Aneuploidy. Am J Med Genet A. 2010;152A(5):1206–12.Google Scholar
  19. Paulsen CA, Gordon DL, Carpenter RW, Gandy HM, Drucker WD. Klinefelter’s syndrome and its variants: a hormonal and chromosomal study. Recent Prog. Horm Res. 1968;24:321–63.Google Scholar
  20. Rao E, Weiss B, Fukami M, Rump A, Niesler B, Mertz A, Muroya K, Binder G, Kirsch S,Winkelmann M, Nordsiek G, Heinrich U, Breuning MH, Ranke MB, Rosenthal A, Ogata T, Rappold GA. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet. 1997;16:54–63.PubMedCrossRefGoogle Scholar
  21. Ratcliffe SG. The sexual development of boys with the chromosome constitution 47,XXY (Klinefelter’s syndrome).Clin Endocrinol Metab. 1982;11:703–16.PubMedCrossRefGoogle Scholar
  22. Ratcliffe SG. Longitudinal growth studies on children with sex chromosome abnormalities. Prog Clin Biol Res. 1985;200:301–9.PubMedGoogle Scholar
  23. Ratcliffe S. Long-term outcome in children of sex chromosome abnormalities. Arch Dis Child. 1999;80:192–5.PubMedCrossRefGoogle Scholar
  24. Ratcliffe SG, Butler GE, Jones M. Edinburgh study of growth and development of children with sex chromosome abnormalities. IV. Birth Defects Orig Artic Ser. 1990;26:1–44.PubMedGoogle Scholar
  25. Ratcliffe SG, Pan H, McKie M. Growth during puberty in the XYY boy. Ann Hum Biol. 1992;19:579–87.PubMedCrossRefGoogle Scholar
  26. Ratcliffe SG, Pan H, McKie M. The growth of XXX females: population-based studies. Ann Hum Biol. 1994;21:57–66.PubMedCrossRefGoogle Scholar
  27. Robinson DO, Jacobs PA. The origin of the extra Y chromosome in males with a 47,XYY karyotype. Hum Mol Genet. 1999;8:2205–9.PubMedCrossRefGoogle Scholar
  28. Robinson A, Lubs HA, Nielsen J, Sorensen K. Summary of clinical findings: profiles of children with 47,XXY, 47,XXX and 47,XYY karyotypes. Birth Defects Orig Artic Ser. 1979;15:261–6.PubMedGoogle Scholar
  29. Robinson A, Bender BG, Linden MG, Salbenblatt JA. Sex chromosome aneuploidy: the Denver Prospective Study. Birth Defects Orig Artic Ser. 1990;26:59–115.PubMedGoogle Scholar
  30. Ross JL, Samango-Sprouse C, Lahlou N, Kowal K, Elder FF, Zinn A. Early androgen deficiency in infants and young boys with 47,XXY Klinefelter syndrome. Horm Res. 2005;64:39–45.PubMedCrossRefGoogle Scholar
  31. Sherman E, Simpson JL. Sex Chromosomal Polysomies (47,XXY; 47,XYY; 47,XXX), Sex Reversed (46,XX) Males, and Disorders of the Male Reproductive Ducts. In: Genetics in obstetrics and gynecology. 2003;323–341Google Scholar
  32. Skakkebaek NE, Hulten M, Jacobsen P, Mikkelsen M. Quantification of human seminiferous epithelium. II. Histological studies in eight 47,XYY men. J Reprod Fertil. 1973;32:391–401.PubMedCrossRefGoogle Scholar
  33. Stewart DA, Bailey JD, Netley CT, Rovet J, Park E, Cripps M, Curtis JA. Growth and development of children with X and Y chromosome aneuploidy from infancy to pubertal age: the Toronto study. Birth Defects Orig Artic Ser. 1982a;18:99–154.PubMedGoogle Scholar
  34. Stewart DA, Netley CT, Park E. Summary of clinical findings of children with 47,XXY, 47,XYY, and 47,XXX karyotypes. Birth Defects Orig Artic Ser. 1982b;18:1–5.PubMedGoogle Scholar
  35. Stewart DA, Bailey JD, Netley CT, Park E. Growth, development, and behavioral outcome from mid-adolescence to adulthood in subjects with chromosome aneuploidy: the Toronto Study. Birth Defects Orig Artic Ser. 1990;26:131–88.PubMedGoogle Scholar
  36. Swerdlow AJ, Higgins CD, Schoemaker MJ, Wright AF, Jacobs PA. Mortality in patients with Klinefelter syndrome in Britain: a cohort study. J Clin Endocrinol Metab. 2005;90:6516–22.PubMedCrossRefGoogle Scholar
  37. Tartaglia N, Davis S, Hench A, Nimishakavi S, Beauregard R, Reynolds A, Fenton L, Albrecht L, Ross J, Visootsak J, Hansen R, Hagerman R. A new look at XXYY syndrome: medical and psychological features. Am J Med Genet A. 2008;146A:1509–22.PubMedCrossRefGoogle Scholar
  38. Varrela J. Effects of X and Y chromosomes on body size and shape. Anthropometric studies of 45,X females, 46,XY females, 46,XX males, 47,XXY males, and 47,XYY males. Proc Finn Dent Soc. 1984;80(5):1–59.Google Scholar
  39. Varrela J, Alvesalo L. Effects of the Y chromosome on quantitative growth: an anthropometric study of 47,XYY males. Am J Phys Anthropol. 1985;68:239–45.PubMedCrossRefGoogle Scholar
  40. Vorona E, Zitzmann M, Gromoll J, Schuring AN, Nieschlag E. Clinical, endocrinological, and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. J Clin Endocrinol Metab. 2007;92:3458–65.PubMedCrossRefGoogle Scholar
  41. Zinn AR, Ramos P, Elder FF, Kowal K, Samango-Sprouse C, Ross JL. Androgen receptor CAGn repeat length influences phenotype of 47,XXY (Klinefelter) syndrome. J Clin Endocrinol Metab. 2005;90:5041–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lise Aksglaede
    • 1
  • Niels Erik Skakkebæk
  • Anders Juul
  1. 1.Department of Growth and Reproduction GRRigshospitaletCopenhagen ØDenmark

Personalised recommendations