Relationship Between Plasma Hormones and Anthropometric Measures of Muscle Mass in Postmenopausal Women

  • Fábio Lera Orsatti
  • Erick Prado de Oliveira
  • Roberto Carlos Burini


The muscle undoubtedly pertains to a complex mechano-biological system that primarily enables efficient locomotion but is also involved in other vital physiological functions. Aging is accompanied by progressive reduction in muscle mass (sarcopenia). Sarcopenia is a progressive process that occurs in healthy individuals. Sarcopenia is usually associated with functional impairment and physical disability, especially in women, and is the direct cause of reduction in muscle strength. Muscle mass and strength start declining over the perimenopausal years and this phenomenon seems to be partly estrogen-dependent. The role of estrogen in sarcopenia remains unclear. Epidemiological studies suggest that as estrogen declines with age there is an increase in the levels of pro-inflammatory cytokines suspected to be involved in the sarcopenia process such as tumor necrosis factor alpha and interleukin-6 (IL-6). These cytokines cause an imbalance in muscle tissue synthesis in favor of excess protein breakdown. Epidemiological studies suggest a relationship between low levels of testosterone and loss of muscle mass, strength and function. In post-menopausal women testosterone increases muscle mass. Despite evidence that DHEA supplementation results in an increase of blood testosterone levels in women and increase of IGF-1 in men, few studies have reported an effect in muscle size, strength or function. Insulin-like growth factor-1 (IGF-1) and growth hormone (GH) decline with age. GH replacement therapy lowers fat mass and increases lean body mass. The aging muscle is capable of synthesizing IGF-1 but it may be less sensitive to IGF-1 and could have an attenuated ability to synthesize an isoform of IGF-1 promoting satellite cell proliferation. Exercise may reverse the resistance of aging muscle to IGF-1.


Postmenopausal Woman Muscle Mass Resistance Training Bioavailable Testosterone Satellite Cell Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bioelectrical impedance analysis


Chronic Obstructive Pulmonary Disease


C-reactive protein


Computerized tomography




Dual X-ray absorptiometry


Growth hormone


Hormone replacement therapy


Hormone therapy


IGF binding protein


Insulin-like growth factor-1




Janus kinase


Derived lean soft tissue mass


Mitogen-activated protein kinase kinase


Magnetic resonance imaging


Renin-angiotensin system


Sex hormone binding globulin


Skeletal muscle mass


Suppression of Cytokine signaling-2


Tumor of necrosis factor-α


  1. Adams G R. Med Sci Sports Exerc. 2010;42:50–7.PubMedGoogle Scholar
  2. Baczynski R, Massry SG, Magott M, el-Belbessi S, Kohan R, Brautbar N. Kidney Int. 1985;28:722–7.PubMedCrossRefGoogle Scholar
  3. Begum N, Sussman KE, Draznin B. J Biol Chem. 1992;267:5959–63.PubMedGoogle Scholar
  4. Bhasin S, Taylor WE, Singh R, Artaza J, Sinha-Hikim I, Jasuja R, Choi H, Gonzalez-Cadavid NF. J Gerontol A Biol Sci Med Sci. 2003;58:M1103–10.PubMedCrossRefGoogle Scholar
  5. Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, Jayme J, O’Connor KG, Christmas C, Tobin JD, Stewart KJ, Cottrell E, St Clair C, Pabst KM, Harman SM. JAMA. 2002;288:2282–92.PubMedCrossRefGoogle Scholar
  6. Borst SE. Age Ageing. 2004;33:548–55.PubMedCrossRefGoogle Scholar
  7. Chen Y, Zajac JD, MacLean HE. J Endocrinol. 2005;186:21–31.PubMedCrossRefGoogle Scholar
  8. Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B. Mech Ageing Dev. 2006;127:794–801.PubMedCrossRefGoogle Scholar
  9. Cobb LJ, Salih DA, Gonzalez I, Tripathi G, Carter EJ, Lovett F, Holding C, Pell JM. J Cell Sci. 2004;117:1737–46.PubMedCrossRefGoogle Scholar
  10. Galvao DA, Taaffe DR, Spry N, Newton RU. Prostate Cancer Prostatic Dis. 2007;10:340–6.PubMedCrossRefGoogle Scholar
  11. Garber AJ. J Clin Invest. 1983;71:1806–21.PubMedCrossRefGoogle Scholar
  12. Gower BA, Nyman L. J Clin Endocrinol Metab. 2000;85:4476–80.PubMedCrossRefGoogle Scholar
  13. Greising SM, Baltgalvis KA, Lowe DA, Warren GL. J Gerontol A Biol Sci Med Sci. 2009;64:1071–81.PubMedCrossRefGoogle Scholar
  14. Hakkinen K, Pakarinen A, Kraemer WJ, Hakkinen A, Valkeinen H, Alen M. J Appl Physiol. 2001;91:569–80.PubMedGoogle Scholar
  15. Haren MT, Malmstrom TK, Banks WA, Patrick P, Miller DK, Morley JE. Maturitas. 2007;57:347–60.PubMedCrossRefGoogle Scholar
  16. Jacobsen DE, Samson MM, Kezic S, Verhaar HJ. Maturitas. 2007;58:7–18.PubMedCrossRefGoogle Scholar
  17. Janssen HC, Samson MM, Verhaar HJ. Am J Clin Nutr. 2002;75:611–5.PubMedGoogle Scholar
  18. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. J Am Geriatr Soc. 2004;52:80–5.PubMedCrossRefGoogle Scholar
  19. Kamel HK, Maas D, Duthie EH, Jr. Drugs Aging. 2002;19:865–77.PubMedCrossRefGoogle Scholar
  20. Kramer PR, Kramer SF, Guan G. Arthritis Rheum. 2004;50:1967–75.PubMedCrossRefGoogle Scholar
  21. Leroith D, Nissley P. J Clin Invest. 2005;115:233–6.PubMedGoogle Scholar
  22. Mitnick MA, Grey A, Masiukiewicz U, Bartkiewicz M, Rios-Velez L, Friedman S, Xu L, Horowitz MC, Insogna K. Am J Physiol Endocrinol Metab. 2001;280:E405–12.PubMedGoogle Scholar
  23. Morley JE, Perry HM, 3rd. J Gerontol A Biol Sci Med Sci. 2003;58:M409–16.PubMedCrossRefGoogle Scholar
  24. Morley JE, Kaiser F, Raum WJ, Perry HM, 3rd, Flood JF, Jensen J, Silver AJ, Roberts E. Proc Natl Acad Sci. 1997;94:7537–42.PubMedCrossRefGoogle Scholar
  25. Musaro A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N. Nature. 1999;400:581–5.PubMedCrossRefGoogle Scholar
  26. Orsatti FL, Nahas EA, Maesta N, Nahas-Neto J, Burini RC. Maturitas. 2008;59:394–404.PubMedCrossRefGoogle Scholar
  27. Percheron G, Hogrel JY, Denot-Ledunois S, Fayet G, Forette F, Baulieu EE, Fardeau M, Marini JF. Arch Intern Med. 2003;163:720–7.PubMedCrossRefGoogle Scholar
  28. Pierine D. Associação da massa muscular esquelética com variáveis demográficas, antropométricas, dietéticas, ­bioquímicas e aptidão física de adultos clinicamente selecionados para programa de mudança de estilo de vida (MEV).UNESP, Botucatu-SP; 2010.Google Scholar
  29. Rasmussen BB, Phillips SM. Exerc Sport Sci Rev. 2003;31:127–31.PubMedCrossRefGoogle Scholar
  30. Rolland Y, Czerwinski S, Abellan Van Kan G, Morley JE, Cesari M, Onder G, Woo J, Baumgartner R, Pillard F, Boirie Y, Chumlea WM, Vellas B. J Nutr Health Aging. 2008;12:433–50.PubMedCrossRefGoogle Scholar
  31. Roubenoff R, Hughes VA. J Gerontol A Biol Sci Med Sci. 2000;55:M716–24.PubMedCrossRefGoogle Scholar
  32. Roubenoff R, Harris TB, Abad LW, Wilson PW, Dallal GE, Dinarello CA. J Gerontol A Biol Sci Med Sci. 1998;53:M20–6.PubMedCrossRefGoogle Scholar
  33. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Am J Med. 2006;119:526 e9–17.PubMedGoogle Scholar
  34. Sievanen H. J Musculoskelet Neuronal Interact. 2005;5:255–61.PubMedGoogle Scholar
  35. Sirola J, Rikkonen T. J Br Menopause Soc. 2005;11:45–50.PubMedCrossRefGoogle Scholar
  36. Thompson JL, Butterfield GE, Gylfadottir UK, Yesavage J, Marcus R, Hintz RL, Pearman A, Hoffman AR. J Clin Endocrinol Metab. 1998;83:1477–84.PubMedCrossRefGoogle Scholar
  37. Visser M, Deeg DJ, Lips P. J Clin Endocrinol Metab. 2003;88:5766–72.PubMedCrossRefGoogle Scholar
  38. Wiik A, Ekman M, Morgan G, Johansson O, Jansson E, Esbjornsson M. Histochem Cell Biol. 2005;124:161–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fábio Lera Orsatti
    • 1
  • Erick Prado de Oliveira
  • Roberto Carlos Burini
  1. 1.Department Sport Science, Institute Health ScienceFederal University of Triângulo Mineiro - UFTMUberabaBrazil

Personalised recommendations