Neonatal Anthropometry: A Tool to Evaluate the Nutritional Status and Predict Early and Late Risks



Neonatal anthropometry is an inexpensive, noninvasive and convenient tool for bedside evaluation, especially in sick and fragile neonates. Anthropometry can be used in neonates as a tool for several purposes: diagnosis of foetal malnutrition and prediction of early postnatal complications; postnatal assessment of growth, body composition and nutritional status; prediction of long-term complications including metabolic syndrome; assessment of dysmorphology; and estimation of body surface. However, in this age group anthropometry has been notorious for its inaccuracy and the main concern is to make validated indices available. Direct measurements, such as body weight, length and body circumferences are the most commonly used measurements for nutritional assessment in clinical practice and in field studies. Body weight is the most reliable anthropometric measurement and therefore is often used alone in the assessment of the nutritional status, despite not reflecting body composition. Derived indices from direct measurements have been proposed to improve the accuracy of anthropometry. Equations based on body weight and length, mid-arm circumference/head circumference ratio, and upper-arm cross-sectional areas are among the most used derived indices to assess nutritional status and body proportionality, even though these indices require further validation for the estimation of body composition in neonates.


Preterm Infant Ponderal Index Cephalic Index Skinfold Measurement Estimate Body Composition 



Arm area


Arm fat area


Appropriate-for-gestational age


Arm muscle area


Biceps skinfold


Body surface


Birth weight


Crown-heel length


Cephalic index


Central to total skinfold ratio


Dual X-ray absorptiometry


Head circumference


Intrauterine growth restriction


Low birth weight LGAlarge-for-gestational age


Mid-arm circumference


Mid-arm circumference/head circumference ratio


Ponderal index


Subscapular skinfold


Small-for-gestational age


Suprailiac skinfold


Total body fat


Tricipital skinfold


Very low birth weight


Water arm area


Weight-for-length ratio


  1. Ananth CV, Vintzileos AM, Shen-Schwarz S, Smulian JC, Lai YL Obstet Gynecol. 1998;91:917–24.PubMedCrossRefGoogle Scholar
  2. Beattie RB, Johnson P Br J Obstet Gynaecol. 1994;101:842–6.PubMedCrossRefGoogle Scholar
  3. Current JD. Internet J Anesthesiol. 1998;2(2).Google Scholar
  4. Dangerfield PH, Taylor CJ Early Hum Dev. 1983;8:225–33.PubMedCrossRefGoogle Scholar
  5. De Bruin NC, Van Velthoven KAM, Stijnen T, Juttmann RE, Degenhart HJ, Visser HKA Am J Clin Nutr. 1995;61:1195–205.PubMedGoogle Scholar
  6. Ehrenkranz RA, Younes N, Lemons JA, Fanaroff AA, Donovan EF, Wright LL, Katsikiotis V, Tyson JE, Oh W, Shankaran S, Bauer CR, Korones SB, Stoll BJ, Stevenson DK, Papile LA Pediatrics. 1999;104:280–9.PubMedCrossRefGoogle Scholar
  7. Engstrom E, Wallgren K, Hellstrom A, Niklasson A Acta Paediatr. 2003;92:211–5.PubMedCrossRefGoogle Scholar
  8. Fenton TR. BMC Pediatr. 2003;3:13.PubMedCrossRefGoogle Scholar
  9. Fletcher MA. In: Fletcher MA, editor. Physical diagnosis in neonatology. Philadelphia, PA: Lippincott-Raven; 1998; pp. 29–54.Google Scholar
  10. Gibson AT, Carney S, Wright NP, Wales JKN Horm Res. 2003;59 (suppl 1):119–28.PubMedCrossRefGoogle Scholar
  11. Jaquet D, Deghmoun S, Chevenne D, Collin D, Czernichow P, Levy-Marchal C Diabetologia. 2005;48:849–55.PubMedCrossRefGoogle Scholar
  12. Jellifee EFP, Jelliffee DB. The arm circumference as a public health index of protein-calorie malnutrition of early childhood. J Trop Pediatr. 1969;32:1527-30.PubMedCrossRefGoogle Scholar
  13. Johnson TS, Engstrom JL, Gelhar DK J Pediatr Gastroenterol Nutr. 1997;24:497–505.PubMedCrossRefGoogle Scholar
  14. Koo WW, Walters JC, Hockman EM J Nutr. 2000;130:2188–94.PubMedGoogle Scholar
  15. Koo WW, Walters JC, Hockman EM Pediatr Res. 2004;56:694–700.PubMedCrossRefGoogle Scholar
  16. Lubchenco LO, Hansman C, Boyd E Pediatrics. 1966;37:403–8.PubMedGoogle Scholar
  17. Meban C. J Anat. 1983;137:271–8.PubMedGoogle Scholar
  18. Olhager E, Forsum E Acta Paediatr. 2006;95:21–8.PubMedCrossRefGoogle Scholar
  19. Olsen IE, Richardson DK, Schmid CH, Ausman LM, Dwyer JT Pediatrics. 2002;110:1125–32.PubMedCrossRefGoogle Scholar
  20. Olsen IE, Lawson ML, Mainzen-Derr J, Sapsford AL J Pediatr. 2009;154:486–91.PubMedCrossRefGoogle Scholar
  21. Olsen IE, Groveman SA, Lawson ML, Clark RH, Zemel BS Pediatrics. 2010;125;e214–e24.PubMedCrossRefGoogle Scholar
  22. Owen P. Clin Exp Obstet Gynecol. 1997;24:8–10.PubMedGoogle Scholar
  23. Patterson RM, Pouliot MR Am J Obstet Gynecol. 1987;157:691–3.PubMedGoogle Scholar
  24. Patterson RM, Pouliot MR. Neonatal morphometrics and perinatal outcome: who is growth retarded? Am J Obstet Gynecol 1987;157:691–3.PubMedGoogle Scholar
  25. Paulsson L, Bondemark L Angle Orthod. 2009;79:276–83.PubMedCrossRefGoogle Scholar
  26. Pereira-da-Silva L, Gomes JV, Clington A, Videira Amaral JM, Bustamante SA Early Hum Dev. 1999;54:117–28.PubMedCrossRefGoogle Scholar
  27. Pereira-da-Silva L, Bergmans KIM, van Kerkhoven LAS, Leal F, Virella D, Videira-Amaral JM Acta Paediatr. 2006;95:742–6.PubMedCrossRefGoogle Scholar
  28. Pereira-da-Silva L, Virella D, Amaral JMV, Guerra A Anthropometry in the newborn: revisited and updated. Lisbon: Nestlé Nutrition Institute(edited in Portuguese); 2007.Google Scholar
  29. Pereira-da-Silva L, Abecasis F, Virella D, Videira-Amaral JM Neonatology. 2009;95:74–9.PubMedCrossRefGoogle Scholar
  30. Prins I. Pediatric Rev Commun. 1995;8:157–70.Google Scholar
  31. Rodríguez G, Samper MP, Ventura P, Moreno LA, Olivares JL, Pérez-González JM Eur J Pediatr. 2004;163:457–61.PubMedCrossRefGoogle Scholar
  32. Rolland-Cachera MF, Brambilla P, Manzoni P, Akrout M, Sironi S, Del Maschio A, Chiumello G Am J Clin Nutr. 1997;65:1709–13.PubMedGoogle Scholar
  33. Rubin LP. Postnatal growth in preterm infants: too small, too big, or just right? J Pediatr 2009;154:473-5.PubMedGoogle Scholar
  34. Sann L, Durand M, Picard J, Lasne Y, Bethenod M Arch Dis Child. 1988;63:256–60.PubMedCrossRefGoogle Scholar
  35. Sasanow SR, Georgieff MK, Pereira G J Pediatr. 1986;109:311–5.PubMedCrossRefGoogle Scholar
  36. Schmelzle HR, Fusch C. Am J Clin Nutr. 2002;76:1096–100.PubMedGoogle Scholar
  37. Shinwell ES, Shlomo M. Measured length of normal term infants changes over the first two days of life. J Pediatr Endocrinol Metab. 2003;16:537-40.PubMedCrossRefGoogle Scholar
  38. Shinwell ES, Shlomo M J Pediatr Endocrinol Metab. 2003;16:537–40.PubMedCrossRefGoogle Scholar
  39. Tamim H, Beydoun H, Itani M, Khogali M, Chokr I, Yunis KA; National Collaborative Perinatal Neonatal Network. J Perinat Med. 2004;32:509–13.PubMedCrossRefGoogle Scholar
  40. Thornton CJ, Shannon DL, Hunter MA, Brans YW Pediatr Res. 1982;16:989–94.PubMedCrossRefGoogle Scholar
  41. Uhing MR, Das UG Clin Perinatol. 2009;36:165–76.PubMedCrossRefGoogle Scholar
  42. Uthaya S, Thomas EL, Hamilton G, Dore CJ, Bell J, Modi N Pediatr Res. 2005;57:211–5.PubMedCrossRefGoogle Scholar
  43. Wilcox MA, Johnson IR, Maynard PV, Smith SJ, Chilvers CE Br J Obstet Gynaecol. 1993;100:342–7.PubMedCrossRefGoogle Scholar
  44. Yau KI, Chang MH Acta Paediatr. 1993;82:427–9.PubMedCrossRefGoogle Scholar
  45. Zankl A. Pediatrics. 2004;114:e333–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal
  2. 2.Neonatal DivisionHospital Dona Estefânia, Centro Hospitalar de Lisboa CentralLisbonPortugal

Personalised recommendations