Proximal Femoral Anthropometry by Computed Tomography

  • Thomas F. Lang


Age-related and pediatric disorders of the hip are common and confer strong risk factors for current and future disability. Because many of these disorders are associated with variations in proximal femoral structure, the study of the anthropometry of the hip has been of considerable interest to the medical research community. Imaging has become critical to the evaluation of human proximal femoral morphology in clinical research studies and in surgical practice. Using this overall approach, a simple radiograph or a computed tomography (CT) scan may be obtained, and landmarks identified either on radiographic films or digital images. As long as the physical size of the pixels is known, the distance between landmarks may be quantified. In this chapter, we will describe the use of computed tomography (CT) images for morphological assessment of the proximal femur. CT images provide a full three-dimensional assessment of the hip bone, allowing for morphometric analysis of both external and internal structures. Because of the inherently volumetric nature of the data, the orientation of the CT image can be standardized, allowing for reproducible metrics of size and distance. The discussion of CT morphology will be focused on the use of CT to characterize response of the proximal femur to aging, on the limitations of this technique for visualizing anatomic detail, and on practical considerations for using CT in studies of cadaveric specimens and in vivo human studies.


Femoral Neck Proximal Femur Linear Attenuation Coefficient Compute Tomography Measurement Partial Volume Average 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Computed Tomography


Hounsfield Unit


Three dimensional


Peak kilovoltage






  1. Augat P, Gordon CL, Lang TF, Iida H, Genant HK. Phys Med Biol. 1998;43:2873–83.PubMedCrossRefGoogle Scholar
  2. Bagi CM, Wilkie D, Georgelos K, Williams D, Bertolini D. Bone. 1997;21:261–7.PubMedCrossRefGoogle Scholar
  3. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. J Biomech 2001;34:859–71.PubMedCrossRefGoogle Scholar
  4. Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD. Osteoporos Int. 2006;17:855–64.PubMedCrossRefGoogle Scholar
  5. Camp JJ, Karwoski RA, Stacy MC, Atkinson EJ, Khosla S, Melton LJ, Riggs BL, Robb RA. Proc SPIE. 2004;5369:74–88.CrossRefGoogle Scholar
  6. Cann CE. Radiology. 1981;140:813–5.PubMedGoogle Scholar
  7. Cann CE, Genant HK. J Comp Assist Tomogr.1980;4:493–500.CrossRefGoogle Scholar
  8. Dunnill MS, Anderson JA, Whitehead R. J Pathol Bacteriol. 1967;94:275–91.PubMedCrossRefGoogle Scholar
  9. Faulkner KG, Glüer CC, Grampp S, Genant HK. Osteo Int. 1993;3:36–42.CrossRefGoogle Scholar
  10. Frost HM. J Bone Miner Res. 1997;12:1539–46.PubMedCrossRefGoogle Scholar
  11. Frost HM. Anat Rec A Discov Mol Cell Evol Biol. 2003;275:1081–101.PubMedCrossRefGoogle Scholar
  12. Gluer CC, Genant HK. J Comput Assist Tomogr. 1989;13:1023–35.PubMedCrossRefGoogle Scholar
  13. Goodsitt M, Hoover P, MS V, Hsueh S. Invest Radiol. 1994;29:695–704.PubMedCrossRefGoogle Scholar
  14. Kalender WA, Polacin A. Med Phy. 1991;18:910–5.CrossRefGoogle Scholar
  15. Kalender WA, Seissler W, Klotz E, Vock P. Radiology. 1990;176:181–3.PubMedGoogle Scholar
  16. Kang Y, Engelke K, Kalender WA. IEEE Trans Med Imaging. 2003;22:586–98.PubMedCrossRefGoogle Scholar
  17. Kang Y, Engelke K, Kalender WA. Med Image Anal. 2004;8:35–46.PubMedCrossRefGoogle Scholar
  18. Kang Y, Engelke K, Fuchs C, Kalender WA. Comput Med Imaging Graph. 2005;29:533–41.PubMedCrossRefGoogle Scholar
  19. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. J Bone Miner Res. 2004;19:1006–12.PubMedCrossRefGoogle Scholar
  20. Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK. Bone. 1997;21:101–8.PubMedCrossRefGoogle Scholar
  21. Lang TF, Leblanc AD, Evans HJ, Lu Y. J Bone Miner Res. 2006;21:1224–30.PubMedCrossRefGoogle Scholar
  22. Li W, Kezele I, Collins DL, Zijdenbos A, Keyak J, Kornak J, Koyama A, Saeed I, Leblanc A, Harris T, Lu Y, Lang T. Bone. 2007;41:888–95.PubMedCrossRefGoogle Scholar
  23. Li W, Kornak J, Harris T, Keyak J, Li C, Lu Y, Cheng X, Lang T. Bone. 2009a;44:596–602.PubMedCrossRefGoogle Scholar
  24. Li W, Kornak J, Harris TB, Keyak J, Li C, Lu Y, Cheng X, Lang T. Bone. 2009b;45:560–7.PubMedCrossRefGoogle Scholar
  25. Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J. Lancet. 2005;366:129–35.PubMedCrossRefGoogle Scholar
  26. Meta M, Lu Y, Keyak JH, Lang T. Bone. 2006;39:152–8.PubMedCrossRefGoogle Scholar
  27. Panjabi MM, White AA. Biomechanics in the musculoskeletal system. New York: Churchill Livingstone; 2001.Google Scholar
  28. Pratt NE. Clinical musculoskeletal anatomy. Philadelphia: Lippincott.Google Scholar
  29. Prevrhal S, Heitz M, Lowet G, Engelke K, Kalender W. Z Med Phys. 1997;7:170–7.Google Scholar
  30. Prevrhal S, Engelke K, Kalender WA. Phys Med Biol. 1999;44:751–64.PubMedCrossRefGoogle Scholar
  31. Riggs BL, Melton Iii LJ, 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S. J Bone Miner Res. 2004;19:1945–54.PubMedCrossRefGoogle Scholar
  32. Rubin GD. Eur J Radiol.2000;36:74–80.PubMedCrossRefGoogle Scholar
  33. van den Bogert AJ, Read L, Nigg BM. Med Sci Sports Exerc. 1999;31:131–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical Imaging, Joint Bioengineering Graduate GroupUC San Francisco/UC BerkeleySan FranciscoUSA

Personalised recommendations