An Anthropometric Analysis of Seated and Standing People

  • Antonino Nucara
  • Matilde Pietrafesa
  • Gianfranco Rizzo
  • Gianluca Scaccianoce


Thermal radiative exchanges of the human body with surrounding surfaces play an essential role in describing the thermal conditions of people in a given environment. Moreover, they could be induced by, among other causes, the presence of high intensity radiant sources, like lighting spots or infrared heating panels. This implies that a suitable set of radiation data related to human body anthropometry is required. This set of data mainly comprises the body surface area, the clothing area factor, the effective radiation area factor, and projected area factors. Several analytical or experimental methods may be utilized in order to compute these parameters. A detailed description of the most common of these will be illustrated in this study, pointing out their main features and their ease of application or otherwise. Thereafter, with reference to a field experiment conducted by means of purpose-built experimental apparatus, a detailed analysis concerning the determination of the values of clothing area factor, effective radiation area factor and projected area factors of a sample of standing and seated, and male and female subjects of the population of southern Italy will be described. In addition, the results of a study to determine differences in anthropometric parameters with regard to different gender and nationalities will be reported. The study will conclude by analyzing a specific case-study.


Zenith Angle Anthropometric Parameter Numerical Simulation Method External Surface Area Metabolic Heat Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfano G, d’Ambrosio FR, Riccio G. La valutazione delle condizioni termoigrometriche negli ambienti di lavoro: comfort e sicurezza.Napoli (in Italian): CUEN; 1997.Google Scholar
  2. ASHRAE. ASHRAE handbook – HVAC applications. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers; 1989.Google Scholar
  3. Boyd E. The growth of the surface area of the human body. Minneapolis: University of Minnesota Press; 1935.Google Scholar
  4. Calvino F, Nucara A, Pietrafesa M, Rizzo G, Scaccianoce G. In: Proceedings of CLIMA 2000 – 7° REHVA World Congress, Naples; 2001.Google Scholar
  5. Calvino F, La Gennusa M, Nucara A, Rizzo G, Scaccianoce G. Occup Ergon. 2005;5:173–85.Google Scholar
  6. Calvino F, Scaccianoce G, Simone A. In: Proceedings of 6° Congresso Nazionale CIRIAF, Perugia (in Italian); 2006.Google Scholar
  7. Calvino F, La Gennusa M, Rizzo G, Scaccianoce G. Appl Ergon. 2009;40:239–50.PubMedCrossRefGoogle Scholar
  8. DuBois D, DuBois EF. Arch Int Med. 1916;17:863–71, Chicago.CrossRefGoogle Scholar
  9. Fanger PO. Thermal comfort. Copenhagen: Danish Technical Press. 1970.Google Scholar
  10. Gehan EA, George SL. Cancer Chemother Rep. 1970;54:225–35.PubMedGoogle Scholar
  11. Guibert A, Taylor CL. J Appl Physiol. 1952;5:24–37.PubMedGoogle Scholar
  12. Haycock GB, Schwartz GJ, Wisotsky DH. J Pediatr. 1978;93:62–6.PubMedCrossRefGoogle Scholar
  13. Horikoshi T, Tsucjikawa T, Kobayashi Y, Miwa E, Kurazumi Y, Hirayama K. ASHRAE Trans. 1990;96:60–6.Google Scholar
  14. Howland J, Dana RT. Am J Dis Child. 1913;VI:33–7.Google Scholar
  15. ISO. ISO 9920: Ergonomics of the thermal environment – Estimation of the thermal insulation and evaporative resistance of a clothing ensemble. Geneva: International Standard Organization; 1995.Google Scholar
  16. ISO. ISO 7726: Ergonomics of the thermal environment – Instruments for measuring physical quantities. Geneva: International Standard Organization; 1998.Google Scholar
  17. ISO. ISO 7250: Basic human body measurements for technological design. Geneva: International Standard Organization; 1995.Google Scholar
  18. ISO. ISO 13731: Ergonomics of the thermal environment – Vocabulary and symbols. Geneva: International Standard Organization; 2001.Google Scholar
  19. Jones B, Ogawa Y. ASHRAE Trans. 1992;98:189–95.Google Scholar
  20. Lo Curcio FP. Scambi termici tra corpo umano ed ambiente indoor: verifica della validità degli algoritmi per il calcolo del fattore di area proiettata. Degree Thesis. Supervisor: Scaccianoce G, University of Palermo (in Italian); 2009.Google Scholar
  21. Meeh K. Zeitschrift für Biologie. 1879;15:425–58 (in German).Google Scholar
  22. Miyazaki Y, Saito M, Seshimo Y. J Hum Living Environ. 1995;2:92–100.Google Scholar
  23. Mosteller RD. The New England J Med. 1987;317:1098.Google Scholar
  24. Ozeki Y, Higuchi S, Saito T, Ohgaki S, Sonda Y. (1992) In: International Symposium on Room Air Convection and Ventilation Effectiveness; 1992. p. 479–489.Google Scholar
  25. Ozeki Y, Sonda Y, Hiramatsu T, Saito T, Ohgaki S. Trans SHASE (The Society of Heating Air-Conditioning and Sanitary Engineers of Japan). 1997;66:1–11 (in Japanese).Google Scholar
  26. Rizzo G, Franzitta G, Cannistraro G. Energy Build. 1991;17:221–30.CrossRefGoogle Scholar
  27. Roebuck JA, Kroemer KHE, Thomson WG. Engineering anthropometry methods. New York: Wiley; 1975.Google Scholar
  28. Scheid F. Theory and problems of numerical analysis. Schaum’s Outline Series, New York: McGraw-Hill; 1968.Google Scholar
  29. Tanabe S, Narita C, Ozeki Y, Konishi M. Energy Build. 2000;32:205–15.CrossRefGoogle Scholar
  30. Underwood CR, Ward EJ. Ergonomics. 1966;9:155–68.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Antonino Nucara
  • Matilde Pietrafesa
  • Gianfranco Rizzo
  • Gianluca Scaccianoce
    • 1
  1. 1.Dipartimento dell’EnergiaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations