Advertisement

Relationship Between Physical Measures of Anthropometry and Bioimpedance Measures

  • María Dolores Marrodán Serrano
  • Marisa González-Montero de Espinosa
  • Estefanía Morales Zamorano
Chapter

Abstract

The purpose of this chapter is to compare the results of body composition obtained by anthropometry and by Bioelectrical Impedance Analysis (BIA). A brief review of the physical and biological bases of BIA is conducted and the main types of devices on the market are described. They are classified according to the range of frequencies (single or multiple frequencies) and the number of electrodes (bipolar, tetrapolar, octopolar). BIA equations for use in children and adults according to age and sex are offered and the statistical methods for checking agreement between the results obtained by BIA and by anthropometry. This point is illustrated with examples from two studies conducted by the authors. The first one corresponds to 106 young adults that were analyzed simultaneously by anthropometry, two BIA bipolar analyzers (OMRON BF-306 and LAICA EP1340) and one tetrapolar BIA analyzer (Holtain BC). The second example is based on a sample of 86 schoolchildren analyzed by anthropometry and a BIA tetrapolar device (Bodystat 1500). The bipolar monitors, also called regional, produce results that depend on fat distribution in the individual. This means that results vary depending on fat location in the upper or lower segment of the body. In contrast, a tetrapolar analyzer offers values which are independent of the localization of fat deposits. The final result is a better match between fat percentage obtained by type scale BIA analyzer and anthropometry in females and between type hand BIA analyzer and anthropometry in males. Tetrapolar devices are more accurate in the paediatric age.

Keywords

Body Composition Total Body Water Bioelectrical Impedance Analysis Analyze Body Composition Impedance Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BIA

Bioelectrical impedance analysis.

DEXA

Dual-Energy X-Ray Absorptiometry

FFM

Fat free mass

FM

Fat mass

ICC

Intraclass correlation coefficient

TBW

Total body water

References

  1. Bellisari A, Roche AF. Antropometría y ecografía. In: Heymsfield SB, Lohman TG, Wang ZM, Going SB, editors. Composición corporal. 2ª ed. México: McGraw Hill; 2007. p. 109–139.Google Scholar
  2. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRefGoogle Scholar
  3. Boulier A, Fricker J, Thomasset A, Apfelbaum M. Fat-free mass estimation by two-electrode impedance method. Am J Clin Nutr. 1990;76:628–32.Google Scholar
  4. Bray GA, DeLany JP, Harsha DW, Volaufova J, Champagne CC. Evaluation of body fat in fatter and leaner 10-y-old African American and white children: the Baton Rouge Children´s Study. A J Clin Nutr. 2001;73:687–702.Google Scholar
  5. Brazier MA. The impedance angle test for thyrotoxicosis. Technic and study of normals. Western J Surg Obstet Gynecol. 1935;43:429–41.Google Scholar
  6. Cordain L, Whicker RE, Johnson JE. Body composition determination in children using bioelectrical impedance. Growth Develop. Using, 1988;52:37–40.CrossRefGoogle Scholar
  7. Callejo ML. Comparaciónmetodológicadelanálisis de la composición corporal: antropometría, bioimpedancia y excreción de creatinina. Doctoral thesis. Universidad Complutense de Madrid (2007).Google Scholar
  8. Casanova M, Rodríguez I, Rico S, Casanova Bellido M. Análisis de la composición corporal porparámetrosantropométricos y bioeléctricos. An Pediatr Barcelona. 2004;61(1):23–31.CrossRefGoogle Scholar
  9. Deuremberg P, Kusters CSL, Smit HE. Assessment of body composition by bioelectrical impedance in children and young adults is strongly age-dependent. Eur J Clin Nutr. 1990;44:261–268.PubMedGoogle Scholar
  10. Deurenberg P, Van der Kooy K, Leenen R, Weststrate JA, Seidell JC. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes. 1991;15(1):17–25.PubMedGoogle Scholar
  11. Dittmar M. Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J PhysAnthr. 2003;122:361–70.Google Scholar
  12. Durnin JVGA, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;4(32):77–97.CrossRefGoogle Scholar
  13. Ellis KJ. Human body composition: in vivo methods. Physiol Rev. 2000;80:649–80.PubMedGoogle Scholar
  14. Fors H, Gelander L, Bjarnason R, Albertsson-Wikland K, Bosaeus I. Body composition, as assessed by bioelectrical impedance spectroscopy and dual-energy X-ray absorptiometry, in a healthy paediatric population. Acta Pediatr. 2002;91(7):755–60.CrossRefGoogle Scholar
  15. Gray DS, Bray GA, Gemayel N, Kaplan K. Effect of obesity on bioelectrical impedance. Am J Clin Nutr. 1989;50:225–260.PubMedGoogle Scholar
  16. Goran MI, Driscoll P, Johnson R, Nagy TR, Hunter G. Cross-calibration of body-composition techniques against dual-energy X-ray absorptiometry in young children. Am J Clin Nutr. 1996;63(3):299–305.PubMedGoogle Scholar
  17. Goldfield GS, Cloutier P, Mallory R, Prud’homme D, Parker T, Doucet E. Validity of foot to foot bioelectrical impedance analysis in overweight and obese children and parents. J Sports Med Phys Fitness. 2006;46(3):447–53.PubMedGoogle Scholar
  18. Heymsfield SB, Wang ZM, Withers RT. Multicomponent molecular level model of body composition analysis. In: Roche AF, Heymsfield SB, Lohman TG, editors. Human body composition. Champaign: Human Kinetics; 1996. p. 129–147.Google Scholar
  19. Hoffer E, Meador C, Simpson D. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969;27:531–4.PubMedGoogle Scholar
  20. Houtkooper LB, Lohman TG, Going SB, Howell WH. Why bioelectrical impedance analysis should be used for estimating adiposity? Am J Clin Nutr. 1996;64:436–48.Google Scholar
  21. Jart L, Hakanen M, Paakkunainen U, Raittinen P y Ronnemaa T. Comparison of hand-to-leg and leg-to-leg bioelectric impedance devices in the assessment of body adiposity in prepuberal children: the STRIP study. Special Turku coronary Risk factor Intervention Project. Acta Paediatr. 2000;89:781–6.CrossRefGoogle Scholar
  22. Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr. 1986;44:417–424.CrossRefGoogle Scholar
  23. Kushner RF, Schoeller DA, Fjeld CR, Danford L. Is the impedance index (Ht2/R) significant in the predicting total body water? Am J Clin Nutr. 1992;56:835–839.CrossRefGoogle Scholar
  24. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol. 1986;60:1327–1332.CrossRefGoogle Scholar
  25. Lukaski HC, Bolonchuk WW. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space, Environ Med. 1988;59:1163–1169.CrossRefGoogle Scholar
  26. Lohman TG. Advances in body composition assessment. Current issues in exercise science. Champaign Illinois: Human Kineticcs Pub Inc;(1992).CrossRefGoogle Scholar
  27. Lukaski HC, Siders WA. Validity and accuracy of regional bioelectrical impedance devices to determine whole-body fatness. Nutrition.2003;19(10):851–7.PubMedCrossRefGoogle Scholar
  28. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat -free mass using bioelectrical impedance Measurements of the human body. Am J Clin Nutr. 1985;41:810–17.PubMedGoogle Scholar
  29. Marrodán MD, Santos-Beneit MG, Mesa Santurino MS, Cabañas Armesilla MD, González-Montero de Espinosa M, Pacheco del Cerro JL. Técnicasanalíticas en el estudio de la composición corporal. Antropometríafrente a sistemas de bioimpedancia bipolar y tetrapolar. NutriciónClínica y DietéticaHospitalaria. 2007;27(1):11–9.Google Scholar
  30. Nuñez C, Gallagher D, Visser M, Pi-Sunyer FX, Wang Z, Heymsfield SB. Bioimpedance analysis: evaluation of ­leg-to-leg system based on pressure contact footpad electrodes. Med Sci Sports Exerc. 1997;29(4):524–31.PubMedCrossRefGoogle Scholar
  31. Nyober J, Bagno S, Barnett A, Halsey RH. Cardiograms electrical impedance changes of the heart in relation to ­electrocardiograms and heart sounds. Clin Invest. 1940;19:163.CrossRefGoogle Scholar
  32. Pietrobelli A, Tato L. Body composition measurements: from the past to the future. ActaPaediatr Suppl. 2005;94(448):8–13.CrossRefGoogle Scholar
  33. Rodriguez P, Bermúdez E, Rodriguez M, Zeni S, Friedman SM, Exeni R. Composición corporal en niñospreescolares: comparación entre métodosantropométricos simples, bioimpedancia y absorciometría de doblehaz de rayos X. Arch Argent Pediatr. 2008;106(2):102–9.PubMedGoogle Scholar
  34. Rowe DA, Dubose KD, Donnelly JE, Mahar MT. Agreement between skinfold-predicted percent fat and percent fat from whole-body bioelectrical impedance analysis in children and adolescents. Int J Pediatr Obes. 2006;1(3):168–75.PubMedCrossRefGoogle Scholar
  35. Segal KR, Van Loan M, Fitzgerald PI, Hodgon JA, Van Itallie TB. Lean body mass estimation by bioelectrical impedance analysis; a four-site cross-validation study. Am J Clin Nutr. 1988;47:7–14.Google Scholar
  36. Schaefer F, Georgi M, Zieger A, Schärer K. Usefulness of bioelectric impedance and skinfold measurements in predicting fat-free mass derived from total body potassium in children. Pediatr Res. 1994;35(5):617–624.Google Scholar
  37. Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Brozeck J, Henschel A, editors. Techniques for measuring body composition. Washington: National Academy of Sciences; 1961. p. 223–244.Google Scholar
  38. Sun G, French CR, Martin GR. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81(1):74–8.Google Scholar
  39. Thomasset A. Bio-electrical properyties of tissues. Lyon Med. 1963;209:1325–52.PubMedGoogle Scholar
  40. Van Loan MD, Boileau RA, Slaughter MH, Stillman RJ, Lohman TG, Going SB, Carswell C. Association of bioelectrical resistance with estimates of fat-free mass determined by densitometry and hidrometry. Am J Hum Biol. 1990a;2:219–226.Google Scholar
  41. Van Loan MD. Bioelectrical impedance analysis to determine fat-free mass, total body water and body fat. Sports Med. 1990b;4:205–217.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • María Dolores Marrodán Serrano
    • 1
  • Marisa González-Montero de Espinosa
  • Estefanía Morales Zamorano
  1. 1.Dpto. de Zoología y Antropología Física, Facultad de BiologíaUniversidad ComplutenseMadridSpain

Personalised recommendations