Selected Applications of Bioelectrical Impedance Analysis: Body Fluids, Blood Volume, Body Cell Mass and Fat Mass

  • Alexander Stahn
  • Elmarie Terblanche
  • Hanns-Christian Gunga


This chapter is intended as a practice-oriented complement to the introduction of the basic concepts of bioimpedance measurements in the chapter Use of bioelectrical impedance: general principles and overview. The present chapter focuses on selected applications of bioelectrical impedance analysis (BIA) for body composition analysis in health and disease. Various techniques and models are introduced in detail and summarized in a discussion about the potentials and limits of BIA. The chapter begins with a brief overview of the historical developments of BIA applications. The following section introduces a range of body composition applications such as measurements of intra- and extracellular water as well as fat mass, body cell mass, and blood volume. In addition to discussing the role of the basic BIA model in these applications, recent alternative developments that show promise for future research are addressed wherever applicable. This includes a discussion underlying the developments from single-frequency to multi-frequency BIA to finally bioimpedance spectroscopy (BIS). It also covers the potential advances of purely descriptive models that are statistically derived compared to rather explanatory, biophysical models that do not rely on calibrations of the target quantity by regression techniques. The most popular approach of the latter is the use of Hanai’s mixture theory and its original approach plus its most recent advances are therefore discussed in detail. This is written in an accessible way, so that also the novice reader will be provided with a basic understanding of the technique to implement it in future applications. The chapter finally discusses the potentials and limits of the applications and models introduced, gives an outlook for future research, and concludes with recommendations regarding the use of BIA/BIS in practice.


Obesity Hydration Europe Deuterium Myxedema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Latin letters (boldface letters denote complex numbers)


Area (m2)


Body cell mass (kg)


Bioelectrical impedance analysis


Bioelectrical impedance spectroscopy


Body mass (kg)


Body mass index (kg·m–2)


Extracellular water (L)


Frequency (Hz)


Characteristic frequency (Hz)


Fat free mass (kg)


Fat mass (kg)


Percentage fat mass (%)


Height (m)


Intracellular water (L)


Length (m)




Resistance (Ω)


Resistance at zero frequency (Ω)


Resistance at infinite frequency (Ω)


Extracellular resistance (Ω)


Intracellular resistance (Ω)


Total body water (L)


General volume (L)


Capacitive reactance (Ω)


General impedance (magnitude) (Ω)

Greek letters (boldface letters denote complex numbers)


Resistivity (Ω·m)




  1. Armstrong LE, Kenefick RW, Castellani JW, Riebe D, Kavouras SA, Kuznicki JT et al. Bioimpedance spectroscopy technique: intra-, extracellular, and total body water. Med Sci Sports Exerc. 1997;29(12):1657–63.PubMedCrossRefGoogle Scholar
  2. Baarends EM, Marken Lichtenbelt WD, Wouters EF, Schols AM. Body-water compartments measured by bio-electrical impedance spectroscopy in patients with chronic obstructive pulmonary disease. Clin Nutr. 1998;17(1):15–22.PubMedCrossRefGoogle Scholar
  3. Barbosa-Silva MC, Barros AJ, Post CL, Waitzberg DL, Heymsfield SB. Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment? Nutrition. 2003;19(5):422–6.PubMedCrossRefGoogle Scholar
  4. Baumgartner RN. Electrical impedance and total body electrical conductivity. In: Roche AF, Heymsfield SB, Lohman TG, editors. Human Body Composition.Champaign, Il: Human Kinetics; 1996. p. 79–103.Google Scholar
  5. Baumgartner RN, Ross R, Heymsfield SB. Does adipose tissue influence bioelectric impedance in obese men and women? J Appl Physiol. 1998;84(1):257–62.PubMedGoogle Scholar
  6. Biggs J, Cha K, Horch K. Electrical resistivity of the upper arm and leg yields good estimates of whole body fat. Physiol Meas. 2001;22(2):365–76.PubMedCrossRefGoogle Scholar
  7. Brazier MAB. The impedance angle test for thyrotoxicosis. J Surg Obstet Gynecol. 1935;43:429–41.Google Scholar
  8. Brozek J, GRANDE F, ANDERSON JT, KEYS A. Densitometric anaylsis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110:113–40.PubMedCrossRefGoogle Scholar
  9. Carter M, Morris AT, Zhu F, Zaluska W, Levin NW. Effect of body mass index (BMI) on estimation of extracellular volume (ECV) in hemodialysis (HD) patients using segmental and whole body bioimpedance analysis. Physiol Meas. 2005;26(2):S93–9.PubMedCrossRefGoogle Scholar
  10. Chertow GM, Lazarus JM, Lew NL, Ma L, Lowrie EG. Bioimpedance norms for the hemodialysis population. Kidney Int. 1997;52(6):1617–21.PubMedCrossRefGoogle Scholar
  11. Chumlea WC, Guo SS. Bioelectrical impedance and body composition: present status and future directions. Nutr Rev. 1994 April;52(4):123–31.PubMedCrossRefGoogle Scholar
  12. Chumlea WC, Guo SS, Siervogel RM. Phase angle spectrum analysis and body water. Appl Radiat Isot. 1998;49(5–6):489–91.PubMedCrossRefGoogle Scholar
  13. Cornish BH, Thomas BJ, Ward LC. Improved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis. Phys Med Biol. 1993;38(3):337–46.PubMedCrossRefGoogle Scholar
  14. Cornish BH, Fallah S. The application of bioelectrical impedance to monitor muscular activity. Proceedings of the XI International Conference on Electrical Bio-Impedance (Oslo) 2001;637–640.Google Scholar
  15. Cox-Reijven PL, Soeters PB. Validation of bio-impedance spectroscopy: effects of degree of obesity and ways of calculating volumes from measured resistance values. Int J Obes Relat Metab Disord. 2000;24(3):271–80.PubMedCrossRefGoogle Scholar
  16. De Lorenzo A, Andreoli A, Matthie J, Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol. 1997;82(5):1542–58.PubMedGoogle Scholar
  17. De Lorenzo A., Sorge RP, Candeloro N, Di CC, Sesti G, Lauro R. New insights into body composition assessment in obese women. Can J Physiol Pharmacol. 1999;77(1):17–21.PubMedCrossRefGoogle Scholar
  18. Dittmar M, Reber H. New equations for estimating body cell mass from bioimpedance parallel models in helathy older Germans. Am J Physiol Endocrinol Metab. 2001;281:E1005–14.PubMedGoogle Scholar
  19. Elia M, Ward LC. New techniques in nutritional assessment: body composition methods. Proc Nutr Soc. 1999;58(1):33–8.PubMedCrossRefGoogle Scholar
  20. Ellis KJ, Wong WW. Human hydrometry: comparison of multifrequency bioelectrical impedance with 2H2O and bromine dilution. J Appl Physiol. 1998;85(3):1056–62.PubMedGoogle Scholar
  21. Ellis KJ, Shypailo RJ, Wong WW. Measurement of body water by multifrequency bioelectrical impedance spectroscopy in a multiethnic pediatric population. Am J Clin Nutr. 1999a;70(5):847–53.PubMedGoogle Scholar
  22. Ellis KJ, Bell SJ, Chertow GM, Chumlea WC, Knox TA, Kotler DP et al. Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference. Nutrition. 1999b;15(11–12):874–80.PubMedCrossRefGoogle Scholar
  23. Elsen R, Siu ML, Pineda O, Solomons NW. Sources of variability in bioelectrical impedance determinations in adults. In: Ellis KJ, Yasumura S, Morgan WD, editors. In vivo body composition studies.London: The Institute of Physical Sciences in Medicine; 1987. p. 184–8.Google Scholar
  24. Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng. 1989;17(1):25–104.PubMedGoogle Scholar
  25. Fuller NJ, Hardingham CR, Graves M, Screaton N, Dixon AK, Ward LC et al. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference. Clin Sci. 1999;96(6):647–57.PubMedCrossRefGoogle Scholar
  26. Fuller NJ, Fewtrell MS, Dewit O, Elia M, Wells JC. Segmental bioelectrical impedance analysis in children aged 8–12 y: 1. The assessment of whole-body composition. Int J Obes Relat Metab Disord. 2002b;26(5):684–91.PubMedCrossRefGoogle Scholar
  27. Fuller NJ, Fewtrell MS, Dewit O, Elia M, Wells JC. Segmental bioelectrical impedance analysis in children aged 8–12 y: 2. The assessment of regional body composition and muscle mass. Int J Obes Relat Metab Disord. 2002a;26(5):692–700.PubMedCrossRefGoogle Scholar
  28. Gluskin E. On the human body’s inductive features: A comment on “Bioelectrical parameters em leader “ by A.L. Lafargue et al. Bioelectromagnetics. 2003;24(4):292–3.PubMedCrossRefGoogle Scholar
  29. Gudivaka R, Schoeller D, Kushner RF. Effect of skin temperature on multifrequency bioelectrical impedance analysis. J Appl Physiol. 1996;81(2):838–45.PubMedGoogle Scholar
  30. Gudivaka R, Schoeller DA, Kushner RF, Bolt MJ. Single- and multifrequency models for bioelectrical impedance analysis of body water compartments. J Appl Physiol. 1999;87(3):1087–96.PubMedGoogle Scholar
  31. Hanai T. Electrical properties of emulsions. In: Sherman DH, editor. Emulsion Science.London: Academic; 1968. p. 354–477.Google Scholar
  32. Hannan WJ, Cowen SJ, Fearon KC, Plester CE, Falconer JS, Richardson RA. Evaluation of multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci. (London) 1994;86(4):479–85.Google Scholar
  33. Hannan WJ, Cowen SJ, Plester C, Fearon KC. Proximal and distal measurements of extracellular and total body water by multi-frequency bio-impedance analysis in surgical patients. Appl Radiat Isot. 1998;49(5–6):621–2.PubMedCrossRefGoogle Scholar
  34. Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969;27(4):531–4.PubMedGoogle Scholar
  35. Horton JW, Van Ravenswaay AC. Electrical impedance of the human body. J Franklin Inst. 1935;20:557–72.CrossRefGoogle Scholar
  36. Houtkooper LB, Lohman TG, Going SB, Howell WH. Why bioelectrical impedance analysis should be used for estimating adiposity. Am J Clin Nutr. 1996;64(3 Suppl):436S-48S.PubMedGoogle Scholar
  37. Jaffrin MY, Morel H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys. 2008;30(10):1257–69.PubMedCrossRefGoogle Scholar
  38. Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol. 2000;89(2):465–71.PubMedGoogle Scholar
  39. Jenin P, Lenoir J, Roullet C, Thomasset AL, Ducrot H. Determination of body fluid compartments by electrical impedance measurements. Aviation Space and Environmental Medicine 1975;46(2):152–5.PubMedGoogle Scholar
  40. Keys A, Brozek J. Body fat in adult man. Physiol Rev. 1953;33(3):245–325.PubMedGoogle Scholar
  41. Kotler DP, Burastero S, Wang E, Pierson RN, Jr. Prediction of body cell mass, fat-free mass and total body water with bioelectrical impedance analysis: effects of race, sex, and disease. Am J Clin Nutr. 1996;64:489S–97S.PubMedGoogle Scholar
  42. Kushner RF. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr. 1992;11(2):199–209.PubMedGoogle Scholar
  43. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM et al. Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr. 2004a;23(5):1226–43.PubMedCrossRefGoogle Scholar
  44. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel GJ et al. Bioelectrical impedance analysis–part II: utilization in clinical practice. Clin Nutr. 2004b;23(6):1430–53.PubMedCrossRefGoogle Scholar
  45. Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 2001;17(3):248–53.PubMedCrossRefGoogle Scholar
  46. Löfgren B. The electrical impedance of a complex tissue and its relation to changes in volume and fluid distribution; a study on rat kidneys. Acta Physiologica Scandinavica (Suppl) 1951;81:1–51.Google Scholar
  47. Lohman TG. Advances in Body Composition Assessment. Champaign, IL: Human Kinetics; 1992.Google Scholar
  48. Lueg W, Grassheim K. Welche Folorungen lassen sich für die Schilddrusen funktion durch vergleichende Untersuchungen von Grundumsatz und Polarisationkapazität der menschlichen Haut ziehen. Zeitschrift für klinische Medizin 1929;110:531–9.Google Scholar
  49. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41(4):810–7.PubMedGoogle Scholar
  50. Lukaski HC, Bolonchuk WW. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviation, Space and Environmental Medicine 1988;59(12):1163–9.PubMedGoogle Scholar
  51. Lukaski HC. Biological indexes considered in the derivation of the bioelectrical impedance analysis. Am J Clin Nutr. 1996;64(3 Suppl):397S–404S.PubMedGoogle Scholar
  52. Martinoli R, Mohamed EI, Maiolo C, Cianci R, Denoth F, Salvadori S et al. Total body water estimation using bioelectrical impedance: a meta-analysis of the data available in the literature. Acta Diabetologica 2003;40 Suppl 1:S203–S206.CrossRefGoogle Scholar
  53. Matthie J, Zarowitz B, De Lorenzo A, Andreoli A, Katzarski K, Pan G et al. Analytic assessment of the various bioimpedance methods used to estimate body water. J Appl Physiol. 1998;84(5):1801–16.PubMedGoogle Scholar
  54. Matthie JR. Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J Appl Physiol 2005 August;99(2):780–1.PubMedCrossRefGoogle Scholar
  55. Maxwell JC. Treatise on electricity and magnetism. Oxford: Oxford University Press; 1873.Google Scholar
  56. McDougall D, Shizgal HM. Body composition measurements from whole body resistance and reactance. Surgical Forum 1986;37(42):44.Google Scholar
  57. McMahon TA, Bonner JT. On Size and Life. New York: Scientific American; 1983.Google Scholar
  58. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;27(9):921–33.PubMedCrossRefGoogle Scholar
  59. National Institute of Health. NIH Consensus statement. Bioelectrical impedance analysis in body composition measurement. National Institutes of Health Technology Assessment Conference Statement. December 12–14, 1994. Nutrition. 1996;12(11–12):749–62.CrossRefGoogle Scholar
  60. Netter FH. Atlas of Human Anatomy. Summit, NJ: Ciba-Geigy; 1989.Google Scholar
  61. Nyboer J. Electrical impedance plethysmography. Springfield, Il: Charles C Thomas; 1959.Google Scholar
  62. Nyboer J. Percent body fat by four terminal bio-electrical impedance and body density in college freshmen. Proceedings of the Vth International Conference on Electrical Bio-impedance, Tokyo 1981.Google Scholar
  63. Ott M, Fischer H, Polat H, Helm EB, Frenz M, Caspary WF et al. Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;9(1):20–5.PubMedGoogle Scholar
  64. Paton NI, Elia M, Jennings G, Ward LC, Griffin GE. Bioelectrical impedance analysis in human immunodeficiency virus-infected patients: comparison of single frequency with multifrequency, spectroscopy, and other novel approaches. Nutrition. 1998;14(9):658–66.PubMedCrossRefGoogle Scholar
  65. Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int. 1994;46(2):534–9.PubMedCrossRefGoogle Scholar
  66. Pietrobelli A, Nunez C, Zingaretti G, Battistini N, Morini P, Wang ZM et al. Assessment by bioimpedance of forearm cell mass: a new approach to calibration. Eur J Clin Nutr. 2002 August;56(8):723–8.PubMedCrossRefGoogle Scholar
  67. Riu PJ. Comments on “Bioelectrical parameters of the whole human body obtained through bioelectrical impedance analysis”. Bioelectromagnetics. 2004;25(1):69–71.PubMedCrossRefGoogle Scholar
  68. Scharfetter H. Structural modeling for impedance-based. non-invasive diagnostic methods. Habilitation Thesis. Graz: TU Graz, Austria; 1999.Google Scholar
  69. Scharfetter H, Schlager T, Stollberger R, Felsberger R, Hutten H, Hinghofer-Szalkay H. Assessing abdominal fatness with local bioimpedance analysis: basics and experimental findings. Int J Obes Relat Metab Disord. 2001;25(4):502–11.PubMedCrossRefGoogle Scholar
  70. Schoeller DA. Bioelectrical impedance analysis. What does it measure? Ann NY Acad Sci. 2000;904:159–62.PubMedCrossRefGoogle Scholar
  71. Schoeller DA. Hydrometry. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human Body Composition. 2 ed. Champaign, IL: Human Kinetics; 2005. p. 35–50.Google Scholar
  72. Schwan HP. Electrical properties of tissue and cell suspensions. In: Lawrence J, Tobias C, editors. Advances in Biological and Medical Physics.New York: Academic; 1957. p. 147–209.Google Scholar
  73. Segal KR, Burastero S, Chun A, Coronel P, Pierson RN, Jr., Wang J. Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurement. Am J Clin Nutr. 1991;54(1):26–9.PubMedGoogle Scholar
  74. Siconolfi SF, Nusynowitz ML, Suire SS, Moore AD, Jr., Rogers A. Assessing total blood (TBV), plasma volume (PV), ∆TBV, and ∆PV from bioelectrical response spectroscopy. The FASEB Journal 1994;8:A15.Google Scholar
  75. Siconolfi SF, Nusynowitz ML, Suire SS, Moore AD, Jr., Leig J. Determining blood and plasma volumes using bioelectrical response spectroscopy. Med Sci Sports Exerc. 1996;28(12):1510–6.PubMedCrossRefGoogle Scholar
  76. Stahn A, Terblanche E, Strobel G. Relationships between bioelectrical impedance and blood volume. Proceedings of the 11th Pre-Olympic Congress, Thessaloniki, Greece 2004;219–20.Google Scholar
  77. Stahn A, Terblanche E, Grunert S, Strobel G. Estimation of maximal oxygen uptake by bioelectrical impedance analysis. Eur J Appl Physiol. 2006 February;96(3):265–73.PubMedCrossRefGoogle Scholar
  78. Stahn A, Strobel G, Terblanche E. VO2max prediction from multi-frequency bioelectrical impedance analysis. Physiol Meas. 2008;29(2):193–203.PubMedCrossRefGoogle Scholar
  79. Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr. 2003;77(2):331–40.PubMedGoogle Scholar
  80. Tarulli A, Esper GJ, Lee KS, Aaron R, Shiffman CA, Rutkove SB. Electrical impedance myography in the bedside assessment of inflammatory myopathy. Neurology. 2005;65(3):451–2.PubMedCrossRefGoogle Scholar
  81. Thomas BJ, Cornish BH, Pattemore MJ, Jacobs M, Ward LC. A comparison of the whole-body and segmental methodologies of bioimpedance analysis. Acta Diabetol. 2003;40:S236–7.PubMedCrossRefGoogle Scholar
  82. Thomasset A. Bioelectrical properties of tissue impedance measurements. Lyon Med. 1962;207:107–18.Google Scholar
  83. Thomasset A. Bio-electric properties of tissues. Estimation by measurement of impedance of extracellular ionic strength and intracellular ionic strength in the clinic. Lyon Med. 1963 June 2;209:1325–50.PubMedGoogle Scholar
  84. Turner AA, Bouffard M. Comparison of Modified to Standard Bioelectrical Impedacne Errors Using Generalizability Theory. Meas Phys Educ Exerc Sci. 1998;2(3):177–96.CrossRefGoogle Scholar
  85. Van Kreel BK, Cox-Reyven N, Soeters P. Determination of total body water by multifrequency bio-electric impedance: development of several models. Med Biol Eng Comput. 1998 May;36(3):337–45.PubMedCrossRefGoogle Scholar
  86. Van Loan MD, Withers P, Matthie J, Mayclin PL. Use of bio-impedance spectroscopy (BIS) to determine extracellular fluid (ECF), intracellular fluid (ICF), total body water (TBW), and fat fre mass (FFM). In: Ellis KJ, Eastman JD, editors. Human Body Composition: In Vivo Methods, Models and Assessment.New York: Plenum; 1993. p. 67–70.Google Scholar
  87. Van Marken Lichtenbelt WD, Westerterp KR, Wouters L, Luijendijk SC. Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. Am J Clin Nutr. 1994;60(2):159–66.PubMedGoogle Scholar
  88. Van Marken Lichtenbelt WD, Snel YE, Brummer RJ, Koppeschaar HP. Deuterium and bromide dilution, and bioimpedance spectrometry independently show that growth hormone-deficient adults have an enlarged extracellular water compartment related to intracellular water. J Clin Endocrinol Metab. 1997 March;82(3):907–11.PubMedCrossRefGoogle Scholar
  89. Varlet-Marie E, Brun J, Blachon C, Orsetti A. Relationships between body composition measured by bioelectrical impedance and exercise performance on cycloergometer. Sci Sports. 1997;12:204–6.CrossRefGoogle Scholar
  90. Varlet-Marie E, Gaudard A, Mercier J, Bressolle F, Brun JF. Is whole body impedance a predictor of blood viscosity? Clin Hemorheol Microcirc. 2003;28(3):129–37.PubMedGoogle Scholar
  91. Vigouroux R. Sur la résistance électrique considérée comme signe clinique. Prog Medicale. 1888;16:45–7.Google Scholar
  92. Wang ZM, Pierson RN, Jr., Heymsfield SB. The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr. 1992;56(1):19–28.PubMedGoogle Scholar
  93. Wang Z, St Onge MP, Lecumberri B, Pi-Sunyer FX, Heshka S, Wang J et al. Body cell mass: model development and validation at the cellular level of body composition. Am J Physiol Endocrinol Metab. 2004;286(1):E123-8.PubMedCrossRefGoogle Scholar
  94. Ward LC, Elia M, Cornish BH. Potential errors in the application of mixture theory to multifrequency bioelectrical impedance analysis. Physiol Meas. 1998;19(1):53–60.PubMedCrossRefGoogle Scholar
  95. Ward L, Fuller N, Cornish B, Elia M, Thomas B. A comparison of the Siconolfi and Cole-Cole procedures for multifrequency impedance data analysis. Electrical Bioimpedance Methods: Applications to Medicine and Biotechnology 1999;873:370–3.CrossRefGoogle Scholar
  96. Ward LC, Stroud DB. Is 50 kHz the optimal frequeny of measurement in single frequency bioelectrical impedance analysis? Proceedings of the XI International Conference on Electrical Bio-Impedance (Oslo) 2001;369–72.Google Scholar
  97. Ward LC, Essex T, Cornish BH. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances. Physiol Meas. 2006;27(9):839–50.PubMedCrossRefGoogle Scholar
  98. Xitron Technologies I. Operating Manual Xitron Hydra ECF/ICF (Model 4200) Bio-impedance Spectrum Analyzer (Revision 1.03). San Diego: Xitron Technologies, Inc.; 2001.Google Scholar
  99. Zhu F, Leonard EF, Levin NW. Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis. Physiol Meas. 2005;26(2):S133–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alexander Stahn
    • 1
  • Elmarie Terblanche
  • Hanns-Christian Gunga
  1. 1.Center for Space Medicine Berlin, Department of Physiology, Campus Benjamin FranklinCharité University Medicine BerlinBerlinGermany

Personalised recommendations