Bioelectrical Impedance to Predict Muscle Mass in the Elderly

  • Lars Ellegård
  • Marja Tengvall


In ageing, body composition changes gradually and will ultimately reduce function and health. In healthy elderly, deterioration of muscle mass and development of sarcopenia may be masked by weight stability. There is an increasing interest in specific estimation of skeletal muscle mass, as it may better reflect the body protein reserves and nutritional status in disease and aging. Bioelectrical impedance analysis is an easily performed and non-invasive indirect method to measure body composition based on the different conductive/resistive properties of body tissues. There are several prediction equations to estimate skeletal muscle mass by BIA. In the elderly, some of the assumptions in the impedance technique may be violated, and thus their validity must be assessed by a reference method in the population under study. Reference values for muscle mass in the elderly have been published based on both single-­frequency and impedance spectroscopy data. Impedance methods are suitable for measurement of muscle mass in the elderly because they are convenient and precise. This chapter presents various aspects of bioimpedance techniques to estimate muscle mass or muscle function in the elderly.


Muscle Mass Skeletal Muscle Mass Bioelectrical Impedance Analysis Body Cell Mass Appendicular Skeletal Muscle Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Body cell mass


Body fat, fatness percentage body fat


Body fat mass index


Bioelectrical impedance analysis


Bioelectrical impedance spectroscopy


Bioelectrical impedance vector analysis


Bone mineral content


Body mass index


Dual-energy X-ray absorptiometry


Extracellular water


Fat mass


Fat free mass


Fat free mass index


Intracellular water


Lean soft tissue mass


Magnetic resonance imaging


Skeletal muscle mass


Skeletal muscle mass index


Total body skeletal muscle mass


  1. Bosaeus I, Strauss B. (2009) (personal communication).Google Scholar
  2. Carlsson M, Gustafson Y, Eriksson S, Håglin L. Arch Gerontol Geriatr. 2009;49:98–107.PubMedCrossRefGoogle Scholar
  3. Chien MY, Huang TY, Wu YT. J Am Geriatr Soc. 2008;56:1710–5.PubMedCrossRefGoogle Scholar
  4. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB, Lukaski HC, Friedl K, Hubbard VS. Int J Obes. 2002;26:1596–609.CrossRefGoogle Scholar
  5. Dey DK, Bosaeus I, Lissner L, Steen B. Eur J Clin Nutr. 2003;57:909–16.PubMedCrossRefGoogle Scholar
  6. Ding J, Kritchevsky SB, Newman AB, Taaffe DR, Nicklas BJ, Visser M, Lee JS, Nevitt M, Tylavsky FA, Rubin SM, Pahor M, Harris TB. Am J Clin Nutr. 2007;85:405–10.PubMedGoogle Scholar
  7. Dittmar M, Reber H. Am J Physiol Endocrinol Metab. 2001;281:E1005–14.PubMedGoogle Scholar
  8. Gallagher D, Visser M, De Meersman RE, Sepúlveda D, Baumgartner RN, Pierson RN, Harris T, Heymsfield SB. J Appl Physiol. 1997;83:229–39.PubMedGoogle Scholar
  9. Hansen RD, Raja C, Aslani A, Smith RC, Allen BJ. Am J Clin Nutr. 1999;70:228–33.PubMedGoogle Scholar
  10. Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson RN. Am J Clin Nutr. 1990;52:214–8.PubMedGoogle Scholar
  11. Janssen I, Heymsfield SB, Baumgartner RN, Ross R. J Appl Physiol. 2000;89:465–71.PubMedGoogle Scholar
  12. Janssen I, Heymsfield SB, Ross R. J Am Geriatr Soc. 2002;50:889–96.PubMedCrossRefGoogle Scholar
  13. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Am J Epidemiol. 2004;159:413–21.PubMedCrossRefGoogle Scholar
  14. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Am J Clin Nutr. 2002;76:378–83.PubMedGoogle Scholar
  15. Kim J, Heshka S, Gallagher D, Kotler DP, Mayer L, Albu J, Shen W, Freda PU, Heymsfield SB. J Appl Physiol. 2004;97:655–60.PubMedCrossRefGoogle Scholar
  16. Kyle UG, Genton L, Hans D, Pichard C. Clin Nutr. 2003;22:537–43.PubMedCrossRefGoogle Scholar
  17. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C. Clin Nutr. 2004a;23:1226–43.PubMedCrossRefGoogle Scholar
  18. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C. Clin Nutr. 2004b;23:1430–53.PubMedCrossRefGoogle Scholar
  19. Norman K, Pirlich M, Sorensen J, Christensen P, Kemps M, Schütz T, Lochs H, Kondrup J. Clin Nutr. 2009;28:78–82.PubMedCrossRefGoogle Scholar
  20. Piccoli A, Piazza P, Noventa D, Pillon L, Zaccaria M. Med Sci Sports Exerc. 1996;28:1517–22.PubMedCrossRefGoogle Scholar
  21. Tengvall M, Ellegård L, Malmros V, Bosaeus N, Lissner L, Bosaeus I. Clin Nutr. 2009;28:52–8.PubMedCrossRefGoogle Scholar
  22. Woodrow G. Curr Opin Clin Nutr Metab Care. 2009;12:8–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Clinical NutritionSahlgrenska University Hospital, Sahlgrenska Academy at University of GothenburgGöteborgSweden

Personalised recommendations