Anatomical Reference Frames for Long Bones: Biomechanical Applications

  • Luca Cristofolini


The definition of anatomical reference frames is necessary both for in vitro biomechanical testing, and for in vivo human movement analyses. Different reference frames have been proposed in the literature, for the different applications. Reference frames for in vivo use must rely on anatomical landmarks that can be accessed non-invasively in living subjects. This limits the operator to certain regions of the bone segments, and possibly to anatomical landmarks that are scarcely reproducible. Conversely, when the bone is fully accessible in vitro, direct measurements are possible of diameters, lengths, and angles. This enables the selection of anatomical reference planes that rely upon anatomical landmarks that are better reproducible. In this section, anatomical reference frames are discussed for the most important long bones of the human skeleton: femur, tibia, fibula, metatarsal bones, humerus, radius, ulna, metacarpal bones, and phalanges. The different reference frames proposed for each bone segment are discussed: this includes the guidelines proposed by the Standardization and Terminology Committee of the International Society of Biomechanics (ISB) for in vivo movement analysis, and also reference frames proposed by different authors for in vitro testing. Optimal reference frames are proposed for each bone segments. Detailed guidelines (including suggested materials and methods) are provided to correctly identify the anatomical landmarks and the anatomical frames. For each bone segment, an estimate of the intra-operator repeatability (i.e. when the same operator repeatedly identifies the reference frame on the same specimen) and of the inter-operator repeatability (i.e. when different operators identify the reference frame on the same specimen) is reported for the recommended reference frame. This confirms the reliability of the approach proposed.


Clay Arthritis Depression Crest Tray 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations and Acronyms




Biomechanical length of the femur


Biomechanical length of the humerus


Biomechanical length of the radius


Biomechanical length of the tibia-fibula complex


Biomechanical length of the ulna


Landmark for the humerus: center of the most lateral part of the humeral trochlea


Landmark for the humerus: center of the most medial part of the humeral trochlea


Computed tomography


Landmark for the femur: on the distal femoral diaphysis in the center of the concavity present on the anterior surface, proximal to the lateral epicondyle


Landmark for the shank: apex of the head of the fibula


Landmark for the shank: midpoint of the line joining MM and LM (coincides with MPM)


International Society of Biomechanics


Landmark for the shank: most medial point on the edge of the lateral tibial condyle


Landmark for the femur: posterior side of the lateral femoral condyle


Living Human Digital Library


Landmark for the shank: apex of the lateral malleolus


Landmark for the tibia: centre of the lateral tibial condylar plateau


Landmark for the shank: most medial point on the edge of the medial tibial condyle


Landmark for the femur: posterior side of the medial femoral condyle


Landmark for the shank: apex of the medial malleolus


Landmark for the tibia: medial point between MTC and LTC


Landmark for the shank: midpoint of the line joining MM and LM (coincides with IM)


Landmark for the tibia: centre of the medial tibial condylar plateau


Landmark for the femur: on the proximal diaphysis, center of a flat region immediately distal to the lesser trochanter


Landmark for the radius: most distal point of the styloid process


Landmark for the tibia: centre of the talar articulation

TN1, TN2, TN3

Landmark for the ulna: three points in the trochlear notch in the proximal ulna


Landmark for the shank: tibial tuberosity


Landmark for the radius: central point of the ulnar notch


Virtual Physiological Osteoporotic Human



The authors wish to thank Massimiliano Baleani, Mateusz Juszczyk, and Serge Van Sint Jan for the stimulating discussions. Giorgia Conti, Valentina Danesi, and Paolo Erani greatly contributed to the development of the reference frames. Andrea Malandrino, Doriana Lionetti, and Caroline Öhman patiently contributed to the inter-operator variability assessment. Luigi Lena provided the artwork. Daniel Espino carefully revised the script.

The European Community co-funded this study (grants: IST-2004-026932 “Living Human Digital Library - LHDL” and #223865 “The Osteoporotic Virtual Physiological Human – VPHOP”).


  1. Backman, S., 1957. The proximal end of the femur: investigations with special reference to the etiology of femoral neck fractures; anatomical studies; roentgen projections; theoretical stress calculations; experimental production of fractures. Acta Radiol Suppl 1–166.Google Scholar
  2. Cappozzo, A., Catani, F., Della Croce, U., Leardini, A., 1995. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10, 171–178.CrossRefGoogle Scholar
  3. Conti, G., Cristofolini, L., Juszczyk, M., Leardini, A., Viceconti, M., 2008. Comparison of three standard anatomical reference frames for the tibia-fibula complex. J Biomech 41, 3384–3389.PubMedCrossRefGoogle Scholar
  4. Cristofolini, L., 1997. A critical analysis of stress shielding evaluation of hip prostheses. Critical Reviews in Biomedical Engineering 25, 409–483.PubMedCrossRefGoogle Scholar
  5. Cristofolini, L., Viceconti, M., 2000. Mechanical validation of whole bone composite tibia models. J Biomech 33, 279–288.PubMedCrossRefGoogle Scholar
  6. Cristofolini, L., Erani, P., Savigni, P., Bordini, B., Viceconti, M., 2007a. Preclinical assessment of the long-term endurance of cemented hip stems. Part 2: in-vitro and ex-vivo fatigue damage of the cement mantle. Proc Inst Mech Eng [H] 221, 585–599.PubMedCrossRefGoogle Scholar
  7. Cristofolini, L., Juszczyk, M., Martelli, S., Taddei, F., Viceconti, M., 2007b. In vitro replication of spontaneous fractures of the proximal human femur. J Biomech 40, 2837–2845.PubMedCrossRefGoogle Scholar
  8. Cristofolini, L., Saponara Teutonico, A., Savigni, P., Erani, P., Viceconti, M., 2007. Preclinical assessment of the long-term endurance of cemented hip stems. Part 1: effect of daily activities--a comparison of two load histories. Proc Inst Mech Eng [H] 221, 569–584.PubMedGoogle Scholar
  9. Cristofolini, L., Taddei, F., Baleani, M., Baruffaldi, F., Stea, S., Viceconti, M., 2008. Multiscale investigation of the functional properties of the human femur. Philos Transact A Math Phys Eng Sci 366, 3319-3341.PubMedGoogle Scholar
  10. Cristofolini, L., Juszczyk, M., Taddei, F., Viceconti, M., 2009. Strain distribution in the proximal human femoral metaphysis. Proc Inst Mech Eng [H] 223, 273–288.PubMedCrossRefGoogle Scholar
  11. Currey, J.D., 1982. Bone as a mechanical structure. In: Biomechanics - Principles and applications. Huiskes, R., van Campen, D.H., de Wijn, J.R. (Eds). Martinus Nijhoff Publishers, pp. 75–85.Google Scholar
  12. Della Croce, U., Camomilla, V., Leardini, A., Cappozzo, A., 2003. Femoral anatomical frame: assessment of various definitions. Med Eng Phys 25, 425–431.PubMedCrossRefGoogle Scholar
  13. Della Croce, U., Leardini, A., Chiari, L., Cappozzo, A., 2005. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21, 226–237.PubMedCrossRefGoogle Scholar
  14. Dunlap, J.T., Chong, A.C., Lucas, G.L., Cooke, F.W., 2008. Structural properties of a novel design of composite analogue humeri models. Ann Biomed Eng 36, 1922–1926.PubMedCrossRefGoogle Scholar
  15. Edmonds, J.L., Bowers, K.W., Toby, E.B., Jayaraman, G., Girod, D.A., 2000. Torsional strength of the radius after osteofasciocutaneous free flap harvest with and without primary bone plating. Otolaryngol Head Neck Surg 123, 400–408.PubMedCrossRefGoogle Scholar
  16. Fung YC. Bone and cartilage. In: Biomechanics: mechanical properties of living tissues. New York: Springer; 1980. p. 383–415.Google Scholar
  17. Gray, H.A., Taddei, F., Zavatsky, A.B., Cristofolini, L., Gill, H.S., 2008. Experimental validation of a finite element model of a human cadaveric tibia. J. Biomech. Engineering 130, 031016–031011 (031019 pages).PubMedCrossRefGoogle Scholar
  18. Gray, H.A., Zavatsky, A.B., Taddei, F., Cristofolini, L., Gill, H.S., 2007. Experimental validation of a finite element model of a composite tibia. Proc Inst Mech Eng [H] 221, 315–324.PubMedGoogle Scholar
  19. Grood, E.S., Suntay, W.J., 1983. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of Biomechanical Engineering 105, 136–144.PubMedCrossRefGoogle Scholar
  20. Harman, M.K., Toni, A., Cristofolini, L., Viceconti, M., 1995. Initial stability of uncemented hip stems: an in-vitro protocol to measure torsional interface motion. Med Eng Phys 17, 163–171.PubMedCrossRefGoogle Scholar
  21. Heiner, A.D., Brown, T.D., 2001. Structural properties of a new design composite replicate femurs and tibias. J Biomech. 34, 773–781.PubMedCrossRefGoogle Scholar
  22. Hsu, E.S., Patwardhan, A.G., Meade, K.P., Light, T.R., Martin, W.R., 1993. Cross-sectional geometrical properties and bone mineral contents of the human radius and ulna. J Biomech 26, 1307–1318.PubMedCrossRefGoogle Scholar
  23. ISB, 1995. Recommendations for standardization in the reporting of kinematic data. International Society for Biomechanics (ISB): Standardization and Terminology in Biomechanics Committee 1–6.Google Scholar
  24. Juszczyk, M. (2009) PhD Thesis. “Human long bones in-vitro biomechanical characterization”. Thesis, Engineering Faculty, University of Bologna, Bologna.Google Scholar
  25. Leardini, A., Sawacha, Z., Paolini, G., Ingrosso, S., Nativo, R., Benedetti, M.G., 2007. A new anatomically based protocol for gait analysis in children. Gait Posture 26, 560–571.PubMedCrossRefGoogle Scholar
  26. O’Connor, J.J., 1992. Load simulation problems in model testing. In: Strain measurement biomechanics. Miles, A.W., Tanner, K.E. (Eds). Chapman & Hall, London, pp. 14–38.Google Scholar
  27. Ruff, C.B., 1981. Structural changes in the lower limb bones with aging at Pecos Pueblo. Thesis, Dissertation in Anthropology Presented to the Graduate Faculties, University of Pennsylvania.Google Scholar
  28. Ruff, C.B., Hayes, W.C., 1983. Cross-sectional geometry at Pecos Pueblo femora and tibiae - A biomechanical investigation: I. method and general patterns of variation. American Journal of Physical Anthropology 60, 359–381.PubMedCrossRefGoogle Scholar
  29. Salvia, P., Jan, S.V., Crouan, A., Vanderkerken, L., Moiseev, F., Sholukha, V., Mahieu, C., Snoeck, O., Rooze, M., 2009. Precision of shoulder anatomical landmark calibration by two approaches: a CAST-like protocol and a new anatomical palpator method. Gait Posture 29, 587–591.PubMedCrossRefGoogle Scholar
  30. Schileo, E., Taddei, F., Cristofolini, L., Viceconti, M., 2008. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41, 356–367.PubMedCrossRefGoogle Scholar
  31. Schileo, E., Taddei, F., Helgason, B., Pallini, F., Cristofolini, L., Viceconti, M., 2006. Accurate prediction of strain values from subject specific finite element models of long bones. J Biomech 39, S12.CrossRefGoogle Scholar
  32. Schileo, E., Taddei, F., Malandrino, A., Cristofolini, L., Viceconti, M., 2007. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech 40, 2982–2989.PubMedCrossRefGoogle Scholar
  33. Sholukha, V., Van Sint Jan, S., Snoeck, O., Salvia, P., Moiseev, F., Rooze, M., 2009. Prediction of joint center location by customizable multiple regressions: application to clavicle, scapula and humerus. J Biomech 42, 319–324.PubMedCrossRefGoogle Scholar
  34. Taylor, J.R., 1997. Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, CA, USA.Google Scholar
  35. Thewlis, D., Richards, J., Bower, J., 2008. Discrepancies in knee joint moments using common anatomical frames. J. Applied Biomechanics 24, 185–190.PubMedGoogle Scholar
  36. Van Sint Jan, S., 2007. Color Atlas of Skeletal Landmark Definitions: Guidelines for Reproducible Manual and Virtual Palpations. Elsevier - Churchill Livingstone, Philadelphia, PA, USA (ISBN-13: 978-0-443-10315-5).Google Scholar
  37. Van Sint Jan, S., Della Croce, U., 2005. Identifying the location of human skeletal landmarks: why standardized definitions are necessary--a proposal. Clin Biomech (Bristol, Avon) 20, 659–660.CrossRefGoogle Scholar
  38. Viceconti, M., Taddei, F., Van Sint Jan, S., Leardini, A., Cristofolini, L., Stea, S., Baruffaldi, F., Baleani, M., 2008. Multiscale modelling of the skeleton for the prediction of the risk of fracture. Clin Biomech (Bristol, Avon) 28, 845–852.CrossRefGoogle Scholar
  39. Waide, V., Cristofolini, L., Toni, A., 2001. A CAD-CAM methodology to produce bone-remodelled composite femurs for preclinical investigations. Proc Inst Mech Eng [H] 215, 459–469.PubMedCrossRefGoogle Scholar
  40. Wu, G., Cavanagh, P.R., 1995. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 28, 1257–1261.PubMedCrossRefGoogle Scholar
  41. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I., 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35, 543–548.PubMedCrossRefGoogle Scholar
  42. Wu, G., van der Helm, F.C., Veeger, H.E., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B., 2005. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech 38, 981–992..PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Facoltà di IngegneriaUniversità di BolognaBolognaItaly

Personalised recommendations