Advertisement

Use of Anthropometry for the Measurement of Lower Extremity Alignment

Chapter

Abstract

The measurement of lower extremity alignment is an important component of the diagnosis and prognosis of musculoskeletal diseases. In addition, poor lower extremity alignment has been identified as a risk factor for incurring injuries during physical activities. Relating anthropometric information and limb alignment to joint loads during daily activities enables the identification of risk factors for musculoskeletal injuries and diseases. Lower extremity alignment can be assessed directly using medical imaging techniques or indirectly using established clinical measures. Palpation of anatomical landmarks and anthropometric information is currently used for many indirect methods assessing the alignment of the lower extremity. Current clinical methods for the measurement of lower extremity alignment include visual observation and methods using callipers, inclinometers or goniometers. A recent study showed the potential of using position capture similar to what is typically performed during gait analysis as an alternative method for the assessment of lower extremity alignment. Mechanical axis alignment assessed using this method correlated with radiographic measurements, the current gold standard, and with disease severity in patients with medial compartment knee osteoarthritis (OA). In addition, novel technology including functional joint center determination and markerless motion capture has a great potential in providing objective and thus reliable assessments of lower extremity alignment especially in populations that would not routinely undergo radiographic examination. Indirect assessment of lower extremity alignment can be challenging in obese patients and in the elderly. Establishing relationships between anthropometric information, limb alignment and detailed information measured using novel techniques is an important step in increasing the relevance of simple and quick clinical measurements for a larger range of sub-populations in health and disease.

Keywords

Anterior Cruciate Ligament Injury Mechanical Axis Joint Center Anatomical Axis Knee Adduction Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ACL

Anterior cruciate ligament

ASIS

Anterior superior iliac spine

ICC

Intraclass correlation coefficient

OA

Osteoarthritis

MRI

Magnetic resonance imaging

Notes

Acknowledgments

The author would like to express her appreciation to Prof. Thomas Andriacchi and Chris Dyrby for their contribution to the study on measuring mechanical axis alignment using position capture.

References

  1. Aguinaldo, A. L., Wyatt, M. P., Chammbers, H. G., & Sutherland, D. H. (2003). Accuracy of a functional method of locating the joint center of the abnormal hip: a validation study using MRI. In: Proceedings of the 8th Gait and Clinical Movement Analysis Meeting, University of Delaware, Wilmington, Delaware.Google Scholar
  2. Aharonson, Z., Voloshin, A., Steinbach, T. V., Brull, M. A., & Farine, I. (1980). Normal foot–ground pressure pattern in children. Clinical Orthopaedics and Related Research, (150), 220–223.PubMedGoogle Scholar
  3. Andriacchi, T. P., Andersson, G. B., Fermier, R. W., Stern, D., & Galante, J. O. (1980). A study of lower-limb mechanics during stair-climbing. Journal of Bone and Joint Surgery, 62(5), 749–757.PubMedGoogle Scholar
  4. Andriacchi, T. P., Galante, J. O., & Fermier, R. W. (1982). The influence of total knee-replacement design on walking and stair-climbing. Journal of Bone and Joint Surgery. American volume, 64(9), 1328–1335.PubMedGoogle Scholar
  5. Andriacchi, T. P., & Strickland, A. B. (1985). Gait analysis as a tool to assess joint kinetics. In N. Berme, Engin, A.E., Correia da Silva, K.M. (Ed.), Biomechanics of Normal and Pathological Human Articulation Joints (Vol. E: Applied Sciences - No. 93, pp. 83–101): NATO ASI Series.CrossRefGoogle Scholar
  6. Andriacchi, T. P., Alexander, E. J., Toney, M. K., Dyrby, C., & Sum, J. (1998). A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. Journal of Biomechanical Engineering, 120(6), 743–749.PubMedCrossRefGoogle Scholar
  7. Andriacchi, T. P., Mündermann, A., Smith, R. L., Alexander, E. J., Dyrby, C. O., & Koo, S. (2004). A framework for the in vivo pathomechanics of osteoarthritis at the knee. Annals of Biomedical Engineering, 32(3), 447–457.PubMedCrossRefGoogle Scholar
  8. Baliunas, A. J., Hurwitz, D. E., Ryals, A. B., Karrar, A., Case, J. P., Block, J. A., et al. (2002). Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthritis and Cartilage, 10(7), 573–579.PubMedCrossRefGoogle Scholar
  9. Bell, A. L., Brand, R. A., & Pedersen, D. R. (1989). Prediction of hip joint center location from external landmarks. Human Movement Science, 8, 3–16.CrossRefGoogle Scholar
  10. Bell, A. L., Pedersen, D. R., & Brand, R. A. (1990). A comparison of the accuracy of several hip center location prediction methods. Journal of Biomechanics, 23(6), 617–621.PubMedCrossRefGoogle Scholar
  11. Besier, T. F., Sturnieks, D. L., Alderson, J. A., & Lloyd, D. G. (2003). Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. Journal of Biomechanics, 36(8), 1159–1168.PubMedCrossRefGoogle Scholar
  12. Cappozzo, A. (1984). Gait analysis methodology. Human Movement Science, 3, 27–50.CrossRefGoogle Scholar
  13. Cappozzo, A. (1991). Three-dimensional analysis of human walking. Human Movement Science, 10, 589–602.CrossRefGoogle Scholar
  14. Cooke, T. D., Scudamore, R. A., Bryant, J. T., Sorbie, C., Siu, D., & Fisher, B. (1991). A quantitative approach to radiography of the lower limb. Principles and applications. Journal of Bone and Joint Surgery, Br, 73(5), 715–720.PubMedGoogle Scholar
  15. Corazza, S., Mündermann, L., & Andriacchi, T. (2007). A framework for the functional identification of joint centers using markerless motion capture, validation for the hip joint. Journal of Biomechanics, 40, 3510–3515.PubMedCrossRefGoogle Scholar
  16. Corazza, S., Mündermann, L., Chaudhari, A. M., Demattio, T., Cobelli, C., & Andriacchi, T. P. (2006). A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Annals of Biomedical Engineering, 34(6), 1019–1029.PubMedCrossRefGoogle Scholar
  17. DeVita, P., & Hortobágyi, T. (2000). Age causes a redistribution of joint torques and powers during gait. Journal of Applied Physiology, 88(5), 1804–1811.PubMedGoogle Scholar
  18. DeVita, P., & Hortobágyi, T. (2003). Obesity is not associated with increased knee joint torque and power during level walking. Journal of Biomechanics, 36(9), 1355–1362.PubMedCrossRefGoogle Scholar
  19. Fakhrai, N., Widhalm, P., Chiari, C., Weber, M., Langs, G., Donner, R., et al. (2009). Automatic assessment of the knee alignment angle on full-limb radiographs. European Journal of Radiology, epub ahead of publication.Google Scholar
  20. Felson, D. T., Naimark, A., Anderson, J., Kazis, L., Castelli, W., & Meenan, R. F. (1987). The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis and Rheumatism, 30(8), 914–918.PubMedCrossRefGoogle Scholar
  21. Fieser, L., Quigley, E., Wyatt, M., Sutherland, D., & Chambers, H. (2000). Comparison of hip joint centers determined from surface anatomy and CT scans: two case studies. In: Proceedings of the Fifth Gait and Clinical Movement Analysis Meeting, Mayo Clinic, Rochester, Minnesota, US.Google Scholar
  22. Fisher, D. S., Dyrby, C. O., Mündermann, A., Morag, E., & Andriacchi, T. P. (2007). Gait characteristics prior to intervention influence the effect of shoe interventions designed to modify knee loading. Journal of Orthopaedic Research, 25(4), 540–546.PubMedCrossRefGoogle Scholar
  23. Fredericson, M., & Yoon, K. (2006). Physical examination and patellofemoral pain syndrome. American Journal of Physical Medicine and Rehabilitation, 85(3), 234–243.PubMedCrossRefGoogle Scholar
  24. Gamage, S. S., & Lasenby, J. (2002). New least squares solutions for estimating the average centre of rotation and the axis of rotation. Journal of Biomechanics, 35(1), 87–93.PubMedCrossRefGoogle Scholar
  25. Glimet, T., Masse, J. P., & Ryckewaert, A. (1979). [Radiological study of painless knees in 50 women more than 65 years old. I. Frontal teleradiography in an upright position]. Revue du rhumatisme et des maladies ostéo-articulaires, 46(11), 589–592.PubMedGoogle Scholar
  26. Halvorsen, K., Lesser, M., & Lundberg, A. (1999). A new method for estimating the axis of rotation and the center of rotation. Journal of Biomechanics, 32(11), 1221–1227.PubMedCrossRefGoogle Scholar
  27. Hinman, R. S., May, R. L., & Crossley, K. M. (2006). Is there an alternative to the full-leg radiograph for determining knee joint alignment in osteoarthritis? Arthritis and Rheumatism, 55(2), 306–313.PubMedCrossRefGoogle Scholar
  28. Hinterwimmer, S., Graichen, H., Vogl, T. J., & Abolmaali, N. (2008). An MRI-based technique for assessment of lower extremity deformities-reproducibility, accuracy, and clinical application. European Radiology, 18(7), 1497–1505.PubMedCrossRefGoogle Scholar
  29. Holzreiter, S. (1991). Calculation of the instantaneous centre of rotation for a rigid body. Journal of Biomechanics, 24(7), 643–647.PubMedCrossRefGoogle Scholar
  30. Hurwitz, D. E., Ryals, A. B., Case, J. P., Block, J. A., & Andriacchi, T. P. (2002). The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. Journal of Orthopaedic Research, 20(1), 101–107.PubMedCrossRefGoogle Scholar
  31. Hsu RW, Himeno S, Coventry MB, Chao EY. (1990). Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop Relat Res. (255), 215–27.PubMedGoogle Scholar
  32. Jonson, S. R., & Gross, M. T. (1997). Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen. Journal of Orthopaedic and Sports Physical Therapy, 25(4), 253–263.PubMedGoogle Scholar
  33. Jubrias, S. A., Odderson, I. R., Esselman, P. C., & Conley, K. E. (1997). Decline in isokinetic force with age: muscle cross-sectional area and specific force. European Journal of Physiology, 434(3), 246–253.Google Scholar
  34. Kempson, G. E. (1982). Relationship between the tensile properties of articular cartilage from the human knee and age. Annals of the Rheumatic Diseases, 41(5), 508–511.PubMedCrossRefGoogle Scholar
  35. Kirkwood, R. N., Culham, E. G., & Costigan, P. (1999). Radiographic and non-invasive determination of the hip joint center location: effect on hip joint moments. Clinical Biomechanics, 14(4), 227–235.CrossRefGoogle Scholar
  36. Kraus, V. B., Vail, T. P., Worrell, T., & McDaniel, G. (2005). A comparative assessment of alignment angle of the knee by radiographic and physical examination methods. Arthritis and Rheumatism, 52(6), 1730–1735.PubMedCrossRefGoogle Scholar
  37. Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V., et al. (1999). Validation of a functional method for the estimation of hip joint centre location. Journal of Biomechanics, 32(1), 99–103.PubMedCrossRefGoogle Scholar
  38. Magee, D. (1992). Orthopedic physical assessment (2nd ed.). Philadelphia: W.B. Saunders.Google Scholar
  39. Martin, J. A., & Buckwalter, J. A. (2002). Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology, 3(5), 257–264.PubMedCrossRefGoogle Scholar
  40. McLean, S. G., Huang, X., & van den Bogert, A. J. (2005). Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clinical Biomechanics, 20(8), 863–870.CrossRefGoogle Scholar
  41. Medina McKeon, J. M., & Hertel, J. (2009). Sex Differences and Representative Values for 6 Lower Extremity Alignment Measures. Journal of Athletic Training, 44(3), 249–255.PubMedCrossRefGoogle Scholar
  42. Miyazaki, T., Wada, M., Kawahara, H., Sato, M., Baba, H., & Shimada, S. (2002). Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Annals of the Rheumatic Diseases, 61(7), 617–622.PubMedCrossRefGoogle Scholar
  43. Moreland, J. R., Bassett, L. W., & Hanker, G. J. (1987). Radiographic analysis of the axial alignment of the lower extremity. Journal of Bone and Joint Surgery. American volume, 69(5), 745–749.PubMedGoogle Scholar
  44. Mündermann, A., Dyrby, C. O., Hurwitz, D. E., Sharma, L., & Andriacchi, T. P. (2004). Potential strategies to reduce medial compartment loading in patients with knee OA of varying severity: Reduced walking speed. Arthritis and Rheumatism, 50(4), 1172–1178.PubMedCrossRefGoogle Scholar
  45. Mündermann, L., Corazza, S., & Andriacchi, T. P. (2006). The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. Journal of Neuroengineering and Rehabilitation, 3, 6.PubMedCrossRefGoogle Scholar
  46. Mündermann, A., Dyrby, C. O., & Andriacchi, T. P. (2008). A comparison of measuring mechanical axis alignment using three-dimensional position capture with skin markers and radiographic measurements in patients with bilateral medial compartment knee osteoarthritis. Knee, 15(6), 480–485.PubMedCrossRefGoogle Scholar
  47. Neptune, R. R., & Hull, M. L. (1995). Accuracy assessment of methods for determining hip movement in seated cycling. Journal of Biomechanics, 28(4), 423–437.PubMedCrossRefGoogle Scholar
  48. Olerud, C., & Berg, P. (1984). The variation of the Q angle with different positions of the foot. Clinical Orthopaedics and Related Research(191), 162–165.PubMedGoogle Scholar
  49. Rab, G. (1992). Consensus on crouched gait. In M. D. Sussman (Ed.), The Diplegic Child: Evaluation and Management (pp. 337–339). Park Ridge, IL: American Academy of Orthopaedic Surgeons.Google Scholar
  50. Sailer, J., Scharitzer, M., Peloschek, P., Giurea, A., Imhof, H., & Grampp, S. (2005). Quantification of axial alignment of the lower extremity on conventional and digital total leg radiographs. European Radiology, 15(1), 170–173.PubMedCrossRefGoogle Scholar
  51. Schipplein, O. D., & Andriacchi, T. P. (1991). Interaction between active and passive knee stabilizers during level walking. Journal of Orthopaedic Research, 9(1), 113–119.PubMedCrossRefGoogle Scholar
  52. Schünke, M., Schulte, E., & Schumacher, U. (2005). Thieme Atlas of Anatomy: General Anatomy and Musculoskeletal System (8th ed.). Stuttgart-Feuerbach: Thieme Georg Verlag.Google Scholar
  53. Seber, S., Hazer, B., Kose, N., Gokturk, E., Gunal, I., & Turgut, A. (2000). Rotational profile of the lower extremity and foot progression angle: computerized tomographic examination of 50 male adults. Archives of orthopaedic and trauma surgery, 120(5-6), 255–258.PubMedCrossRefGoogle Scholar
  54. Seidel, G. K., Marchinda, D. M., Dijkers, M., & Soutas-Little, R. W. (1995). Hip joint center location from palpable bony landmarks–a cadaver study. Journal of Biomechanics, 28(8), 995–998.PubMedCrossRefGoogle Scholar
  55. Spyropoulos, P., Pisciotta, J. C., Pavlou, K. N., Cairns, M. A., & Simon, S. R. (1991). Biomechanical gait analysis in obese men. Archives of Physical Medicine and Rehabilitation, 72(13), 1065-1070.Google Scholar
  56. Stackhouse, S. K., Stevens, J. E., Lee, S. C., Pearce, K. M., Snyder-Mackler, L., & Binder-Macleod, S. A. (2001). Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Physical Therapy, 81(5), 1102–1109.PubMedGoogle Scholar
  57. Teichtahl, A. J., Wluka, A. E., & Cicuttini, F. M. (2008). Frontal plane knee alignment is associated with a longitudinal reduction in patella cartilage volume in people with knee osteoarthritis. Osteoarthritis and Cartilage, 16(7), 851–854.PubMedCrossRefGoogle Scholar
  58. Tylkowski, C. M., Simon, S. R., & Mansour, J. M. (1982). Internal rotation of gait in spastic cerebral palsy in the hip. In: Proceedings of the 10th Open Scientific Meeting of the Hip Society, Mosby, St. Louis, 89–125.Google Scholar
  59. Winter, D. A., Patla, A. E., Frank, J. S., & Walt, S. E. (1990). Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy, 70(6), 340–347.PubMedGoogle Scholar
  60. Woltring, H. J. (1990). Estimation of the trajectory of the instantaneous centre of rotation in planar biokinematics. Journal of Biomechanics, 23(12), 1273–1274.PubMedCrossRefGoogle Scholar
  61. Wong, A. K., Inglis, D., Beattie, K. A., Doan, A., Ioannidis, G., Obeid, J., et al. (2009). Reproducibility of computer-assisted joint alignment measurement in OA knee radiographs. Osteoarthritis and Cartilage, 17(5), 579–585.PubMedCrossRefGoogle Scholar
  62. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., et al. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. Journal of Biomechanics, 35(4), 543–548.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Sport ScienceUniversität KonstanzKonstanzGermany

Personalised recommendations