Anthropometry in Bipedal Locomotion: The Link Between Anatomy and Gait

  • Franck Multon
  • Guillaume Nicolas
  • Robin Huw Crompton
  • Kristiaan D’Août
  • Gilles Berillon


Bipedal locomotion is a key point in many scientific domains including medicine, palaeoanthropology, biomechanics, physiology, neuroscience, robotics, computer animation and so on. The link between an anatomical property and its impact on gait relies on accurate anthropometrical data. While human bipedal locomotion and animal motion in general is often well depicted biomechanically, neurologically or physiologically, relatively little is known about the relationships between the normal bipedal gaits and the anthropometric data and its variation. In this chapter, we aim at describing recent work and knowledge concerning this problem. With regard to bipedal gait, we believe that considering humans among primates in a wider comparative framework would enable us to identify the fundamental relationship between anthropometry and biomechanics. It provides us with an original and complementary point of views to other approaches addressed in this volume. Indeed, it provides us with enlarged fundamental knowledge that could be reused in many application domains, such as explaining gait patterns in normal and pathological human locomotion. In this chapter, we propose a synthesis of relevant contributions addressing this assumption for the specific case of human and non-human primates bipedal gaits. We will address the common features and the main differences of this movement from the anthropometrical and functional point of views. General bipedal gait patterns are depicted with regards to biomechanical parameters including kinematics, dynamics and energy expenditure. We thus identify common properties of bipedal locomotion that seem to be independent from anatomical parameters. We conclude this chapter by describing modern approaches based on computer simulation in order to identify the use of anthropometry in understanding normal and pathological gait in humans.


Fatigue Arthritis Torque Adduct Osteoarthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bent Hip Bent Knee


Centre of mass


Computed tomography images


Natural Pendular Period


Step Length Ratio


Vertical component of the Ground Reaction Force


  1. Aerts P, Van Damme R, Van Elsacker L, Duchêne V. Spatiotemporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in bonobos (Pan paniscus). Am J Phys Anthropol. 2000;111:503–17.PubMedCrossRefGoogle Scholar
  2. Aiello LC, Dean C. An introduction to human evolutionnary anatomy. London: Academic Press; 1990.Google Scholar
  3. Alexander RMcN. Characteristic and advantages of human bipedalism. In: Rayner JMV, Wooron RJ, editors. Biomechanics in evolution. Cambridge: Cambridge University Press; 1991. p. 225–266.Google Scholar
  4. Alexander RMcN. Principles of animal locomotion. Princeton and Oxford: Princeton University Press; 2003. 371 p.Google Scholar
  5. Badler NI, Phillips CB, Webber BL. Simulating Humans: Computer Graphics, Animation, and Control. London: Oxford University Press; 1999.Google Scholar
  6. Caravaggi P, Pataky T., Goulermas JY, Savage R, Crompton R. A dynamic model of the windlass mechanism of the foot: evidence for early stance phase preloading of the plantar aponeurosis. J Exp Biol. 2009;212(15):2491–99.PubMedCrossRefGoogle Scholar
  7. Carey TS, Crompton RH. The metabolic costs of ‘‘bent-hip, bent-knee’’ walking in humans. J Hum Evol. 2005;48:25–44.PubMedCrossRefGoogle Scholar
  8. Cavagna GA, Heglund NC, Taylor CR. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol. 1977;233:R243–61.PubMedGoogle Scholar
  9. Crompton RH, Li Y, Günther MM, Alexander, RMcN. Segment Inertial Properties of Primates: New Techniques for Laboratory and Field Studies of Locomotion. Am J Phys Anthropol. 1996;99(4):547–70.PubMedCrossRefGoogle Scholar
  10. Crompton RH, Li Y, Weijie W, Gunther M, Savage R. The mechanical effectiveness of erect and “bent-hip bent-knee” bipedal walking in Australopithecus afarensis. J Hum Evol. 1998;35:55–74.PubMedCrossRefGoogle Scholar
  11. Crompton RH, Vereecke EE, Thorpe SKS. Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common Panin/Hominin ancestor. J Anat. 2008;212:501–43.PubMedCrossRefGoogle Scholar
  12. D’Août K, Aerts P, Vereecke E, Schoonaert K, De Clercq D, Van Elsacker L. Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes. J Anat. 2004;204(5):353–61.PubMedCrossRefGoogle Scholar
  13. D’Août K, Vereecke E. Primate locomotion: linking in situ and ex situ research, Series “Developments in primatology: progress and prospects”. New York: Springer; 2010.Google Scholar
  14. Dempster WT, Gaughran RL. Am J Anat. 1967;120:33–54.CrossRefGoogle Scholar
  15. Elftman H, Manter J. The evolution of the human foot with especial reference to the joints. J Anat. 1935;70:56–70.PubMedGoogle Scholar
  16. Groves CP. Primate taxonomy. Washington, DC: Smithsonian Institute Press; 2001.Google Scholar
  17. Gruber K, Ruder H, Denoth J, Schneider K. A comparative study of impact dynamics: wobbling mass model versus rigid body models. J Biomech. 1998;31(5):439–44.PubMedCrossRefGoogle Scholar
  18. Hicks J, Arnold A, Anderson F, Schwartz M, Delp S. The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance. Gait and Posture. 2007;26:546–52.CrossRefGoogle Scholar
  19. Hill JJ, Cutting PJ. Heel pain and body weight. Foot and Ankle. 1989;9(5):254–55.PubMedGoogle Scholar
  20. Isler K, Payne RC, Günther MM, Thorpe SKS, Li Y, Savage R, Crompton RH. Inertial properties of hominoid limb segments. J Anat. 2006;209(2):201–18.PubMedCrossRefGoogle Scholar
  21. Jenkins FAJ. Science. 1972;178:877–79.PubMedCrossRefGoogle Scholar
  22. Jones S, Martin R, Pilbeam D. The Cambridge encyclopedia of human evolution. Cambridge: Cambridge University Press; 1992.Google Scholar
  23. Kimura T, Okada M, Ishida H. Dynamics of primate bipedal walking as viewed from the force of foot. Primates. 1977;1:137–47.CrossRefGoogle Scholar
  24. Kirtley C. Clinical gait analysis: theory and practice. Churchill Livingstone; 2006. 328 p.Google Scholar
  25. Kramer PA. Modelling the locomotor energetics of extinct hominids. J Exp Biol. 1999;202:2807–18.PubMedGoogle Scholar
  26. Kummer B. Gait and posture under normal conditions, with special reference to the lower limbs. Clinic Orthop. 1962;25:32–41.Google Scholar
  27. Latimer BM, Ohman JC, Lovejoy CO. Talocrural joint in African hominoids: implications for Australopithecus afarensis. Am J Phys Anthropol. 1987;74:155–75.PubMedCrossRefGoogle Scholar
  28. Latimer, B. Locomotor adaptations Australopithecus afarensis: the issue of arboreality. In Origine(s) de la Bipedie Chez les Hominides (ed. Y.Coppens and B. Senut). Paris: CNRS; 1991. pp. 169–176.CrossRefGoogle Scholar
  29. Li Y, Crompton RH, Günther MM, Alexander RMcN, Wang WJ. Characteristics of Ground Reaction Forces in Normal and Chimpanzee-like Bipedal Walking by Humans. Folia Primatol. 1996;66:13–159.CrossRefGoogle Scholar
  30. Minetti AE. The biomechanics of skipping gaits: a third locomotion paradigm? Proc R Soc Biol Sci. 1998;265(1402):1227–35.CrossRefGoogle Scholar
  31. Morris ME, Mc Ginley J, Huxhan F, Collier J, Iansek R. Constraints on the kinetic, kinematic and spatiotempo-ral parameters of gait in Parkinson’s disease. Hum Mov Sci. 1999;18(2–3):461–83.CrossRefGoogle Scholar
  32. Multon F, France L, Cani-Gascuel MP, Debunne G. Computer animation of human walking: a survey. J Vis Comput Anim Renamed Comp Anim Virt W. 1999;10:39–54.Google Scholar
  33. Nagano A, Umberger BR, Marzke MW, Gerntsen KGM. Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1). Am J Phys Anthropol. 2005;126:2–13.PubMedCrossRefGoogle Scholar
  34. Nicolas G, Multon F, Berillon G, Marchal F. From bone to plausible bipedal locomotion using inverse kinematics. J Biomech. 2007;40(5):1048–57.PubMedCrossRefGoogle Scholar
  35. Nicolas G, Multon F, Berillon G. From bone to plausible bipedal locomotion. Part 2: Complete motion synthesis for bipedal primates. J Biomech. 2009;42:1127–33.PubMedCrossRefGoogle Scholar
  36. Ogihara N, Makishima H, Aoi S, Sugimoto Y, Tsuchiya K, Nakatsukasa M. Development of an anatomically based whole-body musculoskeletal model of the Japanese macaque (Macaca fuscata). Am J Phys Anthropol. 2009;3:323–38.CrossRefGoogle Scholar
  37. Reynolds TR. Stride length and its determinants in humans, early hominids, primates, and mammals. Am J Phys Anthropol. 1987;72:101–15.PubMedCrossRefGoogle Scholar
  38. Ruina A, Bertram JEA, Srinivason M. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudoelastic leg behavior in running and the walk-to-run transition. J Theor Biol. 2005;237(2):170–192.PubMedCrossRefGoogle Scholar
  39. Schmitt D. Compliant walking in primates. J Zool. 1999;247:149–60.CrossRefGoogle Scholar
  40. Schmitt D. Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J Exp Biol. 2003;206:1437–48.PubMedCrossRefGoogle Scholar
  41. Sellers WI, Dennis LA, Wang W, Crompton RH. Evaluating alternative gait strategies using evolutionary Robotics. J Anat. 2004;5:343–51.CrossRefGoogle Scholar
  42. Sellers WI, Gemma MC, Wang W, Crompton RH. Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors. J R Soc Interface. 2005;2:431–41.PubMedCrossRefGoogle Scholar
  43. Shabana A. Dynamics of multibody systems. Cambridge: Cambridge University Press; 1998.Google Scholar
  44. Sockol MD, Raichlen DA, Pontzer H. Chimpanzee locomotor energetics and the origin of human bipedalism. Proc Natl Acad Sci. 2007;104(30):12265–69.PubMedCrossRefGoogle Scholar
  45. Spivack BS. Evaluation and management of gait disorders. New York: Marcel Dekker Inc.; 1995. p. 349.Google Scholar
  46. Stern JT Jr. The cost of bent-knee, bent-hip bipedal gait. A reply to Crompton et al. J Hum Evol. 1999;36:567–70.PubMedCrossRefGoogle Scholar
  47. Stern JT Jr. Climbing to the top: a personal memoir of Australopithecus afarensis. Evol Anthropol. 2000;9:113–33.CrossRefGoogle Scholar
  48. Stern JT, Susman RL. Locomotor anatomy of Australopithecus afarensis. Am J Phys Anthropol. 1983;60:279–318.PubMedCrossRefGoogle Scholar
  49. Steudel-Numbers KL. The energetic cost of locomotion: humans and primates compared to generalized endotherms. J Hum Evol. 2003;44:255–62.PubMedCrossRefGoogle Scholar
  50. Sutherland DH. Kaufman KR, Moitoza JR. Kinematics of normal human walking. In: Rose J, Gamble, JG, editors. Human walking. 2nd ed. Baltimore: Williams and Wilkins: 1994.Google Scholar
  51. Thorpe SKS, Crompton RH. Orang-utan positional behavior and the nature of arboreal locomotion in Hominoidea. Am J Phys Anthropol. 2006;131:384–401.PubMedCrossRefGoogle Scholar
  52. Vereecke EE, D’Août K, Aerts P. The dynamics of hylobatid bipedalism: evidence for an energy-saving mechanism? J Exp Biol. 2006;209:2829–38.PubMedCrossRefGoogle Scholar
  53. Vilensky JA, Larson SG. Primate locomotion: Utilization and control of symmetrical gaits, Ann Rev Anthropol. 1989;18:17–35.CrossRefGoogle Scholar
  54. Wang W, Crompton RH. Analysis of the human and ape foot during bipedal standing with implications for the evolution of the foot. J Biomech. 2004;12:1831–36.CrossRefGoogle Scholar
  55. Wang WJ, Crompton R, Li Y, Günther MM. Energy transformation during erect and bent-hip-bent-knee walking by humans with implications for the evolution of bipedalism. J Hum Evol. 2003;44:563–80.PubMedCrossRefGoogle Scholar
  56. Yamazaki N, Hase K, Ogihara N, Hayamizu N. Biomechanical analysis of the development of infant walking by the neuro-musculo-skeletal model. Folia Primatol. 1996;66:253–71.PubMedCrossRefGoogle Scholar
  57. Zatsiorsky V, Seluyanov V, Chugunova LG. Methods of determining mass inertial characteristics of human body segments. In: Chernyi GG, Regirer A, editors. Contemporary problems of biomechanics. Moscow: Mir publishers; 1990. pp. 273–91.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Franck Multon
    • 1
  • Guillaume Nicolas
  • Robin Huw Crompton
  • Kristiaan D’Août
  • Gilles Berillon
  1. 1.M2S LaboratoryUniversity Rennes2/ENS CachanRennes CedexFrance

Personalised recommendations