Skip to main content

The Uses and Misuses of Body Surface Area in Medicine

  • Chapter
  • First Online:
Handbook of Anthropometry

Abstract

The practicing physician uses anthropometry in two ways: (1) to adjust variables for body size in order to define “pathological” values and (2) to dose medicine correctly. Two questions need to be answered in this context. Which background population is to be regarded as “normal”? Which is the best method of indexing? Based largely in nineteenth century principles of physiology, medical variables have traditionally been adjusted for body surface area (BSA). There are a number of problems with this approach. BSA is an essentially indefinable concept, its size varying according to the magnification used. Measurements of BSA have been plagued by methodological problems. The current standard BSA of 1.73 m2 bears little resemblance to the BSA of modern Western populations. Empirical studies of physiological variables, even commonly used ones, such as glomerular filtration rate (GFR) and cardiac output (Q), have shown that BSA is not the best indexing parameter, or is simply wrong. Since anthropometric variables, such as weight, height, sex and ethnicity are easily available, it is suggested that medical correction formulae should be of the form

$$ \text{Corrected}\text{variable}=\text{Variable}\times \left(A+B\times {\text{Weight}}^{C}\times {\text{Height}}^{D}\right)\times {f}_{\text{1}}\left(\text{Sex}\right)\times {f}_{\text{2}}\left(\text{Ethnicity}\right)$$

where A, B, C and D are constants, and f are defined functions of sex and ethnicity, all of which are determined empirically. Derived constants, such as BSA and body mass index (BMI) should be abandoned, or their use empirically justified. More sophisticated adjustments using fat-free mass (FFM), total body water (TBW) or extracellular water (ECW) may be indicated, but should be justified empirically, as should more complex formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMC:

Bone Mineral Content

BMD:

Bone Mineral Density

BMI:

Body Mass Index = Weight in kilogram/(Height in metres)2

BMR:

Basal Metabolic Rate

BSA:

Body Surface Area

ECW:

Extracellular Water

FEV1:

Forced expiratory volume in 1 s

FVC:

Forced vital capacity

FFM:

Fat-free Mass

GFR:

Glomerular Filtration Rate

H :

Height (cm)

IBW:

Ideal Body Weight

LAD:

Left Atrium Diameter

LBM:

Lean Body Mass

LVM:

Left Ventricular Mass

PNA:

Protein Nitrogen Appearance

Q :

Cardiac Output

SD:

Standard Deviation

SV:

Stroke volume

TBW:

Total Body Water

W :

Weight (kg)

%BF:

Percentage of Body Fat

References

  • Daniels SR, Kimball TR, Morrison JA, Khoury P, Witt S, Meyer RA. Effect of lean body mass, fat mass, blood pressure, and sexual maturation on left ventricular mass in children and adolescents. Statistical, biological, and clinical significance. Circulation. 1995;92:3249–54.

    Article  PubMed  CAS  Google Scholar 

  • de Simone G, Devereux RB, Daniels SR, Mureddu G, Roman MJ, Kimball TR, Greco R, Witt S. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation. 1997;95:1837–43.

    Article  PubMed  CAS  Google Scholar 

  • Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–71.

    Article  CAS  Google Scholar 

  • Felici A, Verweij J, Sparreboom A. Dosing strategies for anticancer drugs: the good, the bad and body-surface area. Eur J Cancer. 2002;38:1677–84.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72:694–701.

    PubMed  CAS  Google Scholar 

  • Gehan EA, George SL. Estimation of human body surface area from height and weight. Cancer Chemother Rep. 1970;54:225–35.

    PubMed  CAS  Google Scholar 

  • George, Sharma S, Batterham A, Whyte G, McKenna W. Allometric analysis of the association between cardiac dimensions and body size variables in 464 junior athletes. Clin Sci. 2001;100:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharm. 2004;58:119–33.

    Article  Google Scholar 

  • Haycock GB, Schwartz GJ. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93:62–6.

    Article  PubMed  CAS  Google Scholar 

  • Heaf JG. The origin of the 1.73-m2 body surface area normalization: problems and implications. Clin Physiol Funct Imaging. 2007;27:135–7.

    Article  PubMed  Google Scholar 

  • Hume R, Weyers E. Relationship between total body water and surface area in normal and obese subjects. J Clin Pathol. 1971;24:234–8.

    Article  PubMed  CAS  Google Scholar 

  • Kurtin PS. Standardization of renal function measurements in children: kidney size versus metabolic rate. Child Nephrol Urol. 1988;89:337–9.

    Google Scholar 

  • Leevy CM, Mendenhall CL, Lesko W, Howard MM. Estimation of hepatic blood flow with indocyanine green. J Clin Invest. 1962;41:1169–79.

    Google Scholar 

  • Livingston EH, Lee S. Body surface area prediction in normal-weight and obese patients. Am J Physiol Endocrin Metab. 2001;281:E586–91.

    CAS  Google Scholar 

  • Mandelbrot BB. In: The fractal geometry of nature. New York: Freeman; 1982.

    Google Scholar 

  • McIntosh JF, Möller R, Van Slycke DD. Studies on urea excretions III. The influence of body size on urea output. J Clin Invest. 1928;6:467–83.

    Article  PubMed  CAS  Google Scholar 

  • Metropolitan Life Insurance Company. 1979 body build study. New York: Society of Actuaries and Association of Life Insurance Medical Directors of America; 1980.

    Google Scholar 

  • Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Implications for drug therapy. Clin Pharmacokinet. 1994;26:292–307.

    Article  PubMed  CAS  Google Scholar 

  • Neilan TG, Pradhan AD, Weyman AE. Derivation of a size-independent variable for scaling of cardiac dimensions in a normal adult population. J Am Soc Echocardiogr. 2008;21:779–85.

    Article  PubMed  Google Scholar 

  • Nevill AM, Holder RL. Identifying population differences in lung function: results from the Allied Dunbar national fitness survey. Ann Human Biol. 1999;26:267–85.

    Article  CAS  Google Scholar 

  • Nevill AM, Bate S, Holder RL. Modeling physiological and anthropometric variables known to vary with body size and other confounding variables. Yrbk Phys Anthropol. 2005;48:141–53.

    Article  Google Scholar 

  • Peters AM. Expressing glomerular filtration rate in terms of extracellular fluid volume. Eur J Nucl Med. 2004;31:137–49.

    Article  CAS  Google Scholar 

  • Singer. Of mice and men and elephants: metabolic rate sets glomerular filtration rate. Am J Kidney Dis. 2001;37:164–78.

    Article  PubMed  CAS  Google Scholar 

  • Tucker GR, Alexander JK. Estimation of body surface area of extremely obese human subjects. J Appl Physiol. 1960;15:781–4.

    PubMed  CAS  Google Scholar 

  • Turley KR, Stanforth PR, Rankinen T, Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH. Scaling submaximal exercise cardiac output and stroke volume: the HERITAGE Family Study. Int J Sports Med. 2006;27:993–9.

    Article  PubMed  CAS  Google Scholar 

  • van der Sluys H, Guchelaar HJ. Formulas for calculating body surface area. Ann Pharmacother. 2002;36:345–6.

    Article  Google Scholar 

  • Vasan RS, Levy D, Larson MG, Benjamin EJ. Interpretation of echocardiographic measurements: a call for standardization. Am Heart J. 2000;139:412–22.

    Article  PubMed  CAS  Google Scholar 

  • Visser FW, Muntinga JHJ, Dierckx RA, Navis G. Feasibility and impact of the measurement of extracellular fluid volume simultaneous with GFR by 125I-iothalamate. Clin J Am Soc Nephrol. 2008;3:1308.

    Article  PubMed  Google Scholar 

  • Watson PE, Watson ID, Batt RD. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr. 1980;33:27–39.

    PubMed  CAS  Google Scholar 

  • Yu CY, Lo YH, Chiou WK. The 3D scanner for measuring body surface area: a simplified calculation in the Chinese adult. Appl Ergon. 2003;34:273–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Heaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heaf, J. (2012). The Uses and Misuses of Body Surface Area in Medicine. In: Preedy, V. (eds) Handbook of Anthropometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1788-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1788-1_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1787-4

  • Online ISBN: 978-1-4419-1788-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics