Use of Anthropometry in Monitoring the Nutritional and Health Status of Persons Living with HIV/AIDS

  • Selby Nichols
  • Nequesha Dalrymple
  • Marlon Francis


Approximately 33 million persons are living with HIV/AIDS globally. Majority of these persons living with HIV/AIDS (PLWHA) reside in low and middle income countries where there is a scarcity of resources to deal with the magnitude of the problems associated with this HIV/AIDS pandemic. Weight loss is common feature of HIV/AIDS. In fact, the extent of this weight loss is a reasonable predictor of the morbidity and mortality among PLWHA. Malnutrition in PLWHA results from several factors. Among these are changes in metabolism resulting in increased utilization of nutrients, mal-absorption of nutrients associated with the frequent diarrheas and reduced dietary intakes due to nausea and vomiting, inability to swallow, and reduced access to nutritious foods. Malnutrition and HIV/AIDS act in a synergistic manner to accelerate and perpetuate the deleterious effect of the latter. HIV/AIDS is associated with deficiencies of zinc, vitamins B, C, E, proteins and calories. Consequently, PLWHA tend to exhibit clinical symptoms that are relatively similar to those associated with macro and micronutrient deficiencies. More recently, HIV/AIDS has been associated with unhealthy lipid profiles, especially among those on Highly Active Anti-Retroviral Therapy (HAART). While nutritional status cannot be measured directly, there are several anthropometric measures that can provide useful information on aspects of the nutritional status of PLWHA. To ensure accuracy of the data generated, anthropometric measures of nutritional status in PLWHA should be highly sensitive, specific and have good predictive values. They should also be simple to use, relatively inexpensive, acceptable to PLWHA, non-invasive, easy to interpret by all categories of workers in the health care system and applicable to all stages of the life cycle from infancy to adulthood. Among the anthropometric measures fulfilling these criteria are weight, height, weight-for-age (WA), weight-for-height (WH), body mass index (BMI), mid upper arm circumference (MUAC), skinfold thickness (SF), waist circumference (WC) and waist-hip ratio (WHR). Studies suggest that several of these anthropometric measures are associated levels of immune function (e.g., CD4+, CD8+ cells counts), blood proteins levels, and anaemia. Moreover, excess weight loss is predictive of both the morbidity and mortality among PLWHA. Anthropometric indices therefore provide useful tools for monitoring and evaluating the patho-physiological changes among PLWHA. While anthropometry allow us to monitor and evaluate changes in the nutritional status of PLWHA, its greatest benefit can only be realized as part of a comprehensive monitoring strategy that includes clinical assessment and biochemical tests.


Cholesterol Zinc Obesity Income Selenium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Arm muscle area


Body mass index


Center for Disease Control


Highly Active Anti-Retroviral Therapy


Mid upper arm circumference


Protein Energy Malnutrition


Persons living with HIV/AIDS


Skinfold thickness


Triceps skinfold


Waist circumference


Waist-to-hip ratio








  1. Adeyemi O. Cardiovascular risk and risk management in HIV-infected patients. Top HIV Med. 2007;15(5):159–62.Google Scholar
  2. Adediran IA, Durosinmi MA. Peripheral blood and bone marrow changes in patients with acquired immunodeficiency syndrome. Afr J Med Med Sci. 2006;35 (Suppl):85–91.PubMedGoogle Scholar
  3. Arpadi S, Fawzy A, Aldrovandi GM, Kankasa C, Sinkala M, Mwiya M, Thea DM, Kuhn L. Am J Clin Nutr. 2009;90:344–53.PubMedCrossRefGoogle Scholar
  4. Bachmann MO, Booysen FL. Health and economic impact of HIV/AIDS on South African households: a cohort study. BMC Public Health. 2003;3:14.PubMedCrossRefGoogle Scholar
  5. Bailey RC, Kamenga MC, Nsuami MJ, Nieburg P, St Louis ME. Growth of children according to maternal and child HIV, immunological and disease characteristics: a prospective cohort study in Kinshasa, Democratic Republic of Congo. Int J Epidemiol. 1999;28(3):532–40.Google Scholar
  6. Brown T, Wang Z, Chu H, Palella FJ, Kingsley L, Witt MD, Dobs AS. Longitudinal anthropometric changes in HIV-infected and HIV-uninfected men. J Acquir Immune Defic Syndr. 2006;43(3):356–62.Google Scholar
  7. Baril JG, Junod P, Leblanc R, Dion H, Therrien R, Laplante F, Falutz J, Côté P, Hébert MN, Lalonde R, Lapointe N, Lévesque D, Pinault L, Rouleau D, Tremblay C, Trottier B, Trottier S, Tsoukas C, Weiss K. Can J Infect Dis Med Microbiol. 2005;16:233–43.Google Scholar
  8. Burgin J, Nichols S, Dalrymple N. The nutritional status of clinic attendees living with HIV/AIDS in St Vincent and the Grenadines. West Indian Med J. 2008;57(5):438–43.PubMedGoogle Scholar
  9. Carroll SC Cooke B, Butterly RJ, Moxon JWD, Moxon JWA, Dudfield M. Waist circumference in the assessment of obesity and associated risk factors in coronary artery disease. Coron Health Care. 2000;4(4):179–86.CrossRefGoogle Scholar
  10. Charlin V, Carrasco F, Sepúlveda C, Torres M, Kehr J. Nutritional supplementation according to energy and protein requirements in malnourished HIV-infected patients. Arch Latinoam Nutr. 2002;52(3):267–73.PubMedGoogle Scholar
  11. Chhagan MK, Kauchali S. Comorbidities and mortality among children hospitalized with diarrheal disease in an area of high prevalence of human immunodeficiency virus infection. Pediatr Infect Dis J. 2006;25(4):333–8.PubMedCrossRefGoogle Scholar
  12. Colecraft E. HIV/AIDS: nutritional implications and impact on human development. Proc Nutr Soc. 2008;67(1):109–13.PubMedCrossRefGoogle Scholar
  13. Crocker KS. Gastrointestinal manifestations of the acquired immunodeficiency syndrome. Nurs Clin North Am. 1989;24(2):395–406.PubMedGoogle Scholar
  14. Dixon S, McDonald S, Roberts J. The impact of HIV and AIDS on Africa’s economic development. BMJ. 2002;324(7331):232–4.PubMedCrossRefGoogle Scholar
  15. Dolan SE, Kanter JR, Grinspoon S. Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2006;91(8):2938–45.PubMedCrossRefGoogle Scholar
  16. Esposito F, Coutsoudis A, Visser J, Kindra G. South Afr J HIV Med. 2008;9:36–42.Google Scholar
  17. Farrugia PM, Lucariello R, Coppola JT. Human immunodeficiency virus and atherosclerosis. Cardiol Rev. 2009;17(5):211–5.PubMedCrossRefGoogle Scholar
  18. Gentilini M, Chieze F. Socioeconomic aspects of human immunodeficiency virus (HIV) infection in developing countries. Bull Acad Natl Med. 1990;174(8):1209–19.PubMedGoogle Scholar
  19. George E, Lucas GM, Nadkarni GN, Fine DM, Moore R, Atta MG. Kidney function and the risk of cardiovascular events in HIV-1-infected patients. AIDS. 2010;24(3):387–94.PubMedCrossRefGoogle Scholar
  20. Gibson RS. Principles of nutritional assessment. Oxford: Oxford University Press; 1990.Google Scholar
  21. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith Jr SC, Spertus JA. Costa F. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol Rev. 2005;13(6):322–7.Google Scholar
  22. Guillén S, Ramos JT, Resino R, Bellón JM, Muñoz MA. Impact on weight and height with the use of HAART in HIV-infected children. Pediatr Infect Dis J. 2007;26(4):334–8.PubMedCrossRefGoogle Scholar
  23. Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr. 1982;36(4):680–90.PubMedGoogle Scholar
  24. Hoyt MJ, Staats JA. Wasting and malnutrition in patients with HIV/AIDS. J Assoc Nurses AIDS Care. 1991;2(3):16–28.PubMedGoogle Scholar
  25. Ilinigumugabo A. The economic consequences of AIDS in Africa. Afr J Fertil Sexual Reprod Heal. 1996;1(2):153–61.Google Scholar
  26. Introduction: Undernutrition: Merck Manual Professional. Accessed 19 Sep 2009.
  27. Jones CY, Tang AM, Forrester JE, Huang J, Hendricks KM, Knox TA, Spiegelman D, Semba RD, Woods MN. Micronutrient levels and HIV disease status in HIV-infected patients on highly active antiretroviral therapy in the Nutrition for Healthy Living cohort. J Acquir Immune Defic Syndr. 2006;43(4):475–82.PubMedCrossRefGoogle Scholar
  28. Justman JE, Hoover DR, Shi Q, Tan T, Anastos K, Tien PC, Cole SR, Hyman C, Karim R, Weber K, Grinspoon S. Longitudinal anthropometric patterns among HIV-infected and HIV-uninfected women. J Acquir Immune Defic Syndr. 2008;47(3):312–9.PubMedCrossRefGoogle Scholar
  29. Kar BR, Rao SL, Chandramouli BA. Cognitive development in children with chronic protein energy malnutrition. Behav Brain Funct. 2008;4:31.PubMedCrossRefGoogle Scholar
  30. Keiser P, Nassar N, Kvanli MB, Turner D, Smith JW, Skiest D. Long-term impact of highly active antiretroviral therapy on HIV-related health care costs. J Acquir Immune Defic Syndr. 2001;27(1):14–9.PubMedCrossRefGoogle Scholar
  31. Koenig SP, Riviere C, Leger P, Severe P, Atwood S, Fitzgerald DW, Pape JW, Schackman BR. The cost of antiretroviral therapy in Haiti. Cost Eff Resour Alloc. 2008;6:3.CrossRefGoogle Scholar
  32. Kotler DP. HIV-associated malnutrition. J Physicians Assoc AIDS Care. 1995;2:12–5.Google Scholar
  33. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R. Obesity (Silver Spring). 2006;14:336–41.CrossRefGoogle Scholar
  34. Kutai M, Shalev SA, Chervinski I, Mazor G, Rabie M, Nevo Y. Pediatr Neurol. 2006;35: 425–9.PubMedCrossRefGoogle Scholar
  35. Lanzillotti JS, Tang AM. Nutr Clin Care. 2005;8:16–23.PubMedGoogle Scholar
  36. Lee RD, Nieman DC. Nutritional assessment. 3rd ed. Boston: McGraw-Hill; 2003.Google Scholar
  37. Llorente A, Brouwers P, Charurat M, Magder L, Malee K, Mellins C, Ware J, Hittleman J, Mofenson L, Velez-Borras J, Adeniyi-Jones S. Dev Med Child Neurol. 2003;45:76–84.PubMedCrossRefGoogle Scholar
  38. Lohmann TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign: Human Kinetics Books; 1988.Google Scholar
  39. Macmillan C, Magder LS, Brouwers P, Chase C, Hittelman J, Lasky T, Malee K, Mellins CA, Velez-Borras J. Neurology. 2001;57:1402–11.PubMedCrossRefGoogle Scholar
  40. Mangili A, Murman DH, Zampini AM, Wanke CA. Clin Infect Dis. 2006;42:836–42.PubMedCrossRefGoogle Scholar
  41. Martínez E, Larrousse M, Gatell JM. Curr Opin Infect Dis. 2009;22:28–34.PubMedCrossRefGoogle Scholar
  42. Masiá M, Padilla S, García N, Jarrin I, Bernal E, López N, Hernández I, Gutiérrez F. Antivir Ther. 2010;15:101–10.PubMedCrossRefGoogle Scholar
  43. Mehta S, Fawzi W. Vitam Horm. 2007;75:355–833.PubMedCrossRefGoogle Scholar
  44. Mei Z, Ogden CL, Flegal KM, Grummer-Strawn LM. J Pediatr. 2008;153:622–8.PubMedCrossRefGoogle Scholar
  45. Migueles SA, Connors M. Curr Infect Dis Rep. 2002;4:461–7.PubMedCrossRefGoogle Scholar
  46. Mutimura E, Stewart A, Rheeder P, Crowther NJ. J Acquir Immune Defic Syndr. 2007;46:451–5.PubMedCrossRefGoogle Scholar
  47. Nichols S, Cadogan F. Eur J Clin Nutr. 2009;63:253–8.PubMedCrossRefGoogle Scholar
  48. Ogunro PS, Idogun ES, Ogungbamigbe TO, Ajala MO, Olowu OA. Niger Postgrad Med J. 2008;15:219–24.PubMedGoogle Scholar
  49. Oguntibeju OO, van den Heever WM, Van Schalkwyk FE. Pak J Biol Sci. 2007;10:4327–38.PubMedCrossRefGoogle Scholar
  50. Onat A, Avci GS, Barlan MM, Uyarel H, Uzunlar B, Sansoy V. Int J Obes Relat Metab Disord. 2004;28:1018–25.PubMedCrossRefGoogle Scholar
  51. Pierre R, Steel-Duncan JC, Evans-Gilbert T, Rodriguez B, Palmer P, Smikle MF, Whorms S, Hambleton I, Figueroa JP, Christie CD. West Indian Med J. 2008;53:315–21.Google Scholar
  52. Roc AC, Ances BM, Chawla S, Korczykowski M, Wolf RL, Kolson DL, Detre JA, Poptani H. Arch Neurol. 2007;64:1249–57.PubMedCrossRefGoogle Scholar
  53. Sattler FR, Rajicic N, Mulligan K, Yarasheski KE, Koletar SL, Zolopa A, Alston Smith B, Zackin R, Bistrian B, ACTG 392 Study Team. Am J Clin Nutr. 2008;88:1313–21.PubMedGoogle Scholar
  54. Shet A, Mehta S, Rajagopalan N, Dinakar C, Ramesh E, Samuel NM, Indumathi CK, Fawzi WW, Kurpad AV. BMC Pediatr. 2009;9:37.PubMedCrossRefGoogle Scholar
  55. Shevitz AH, Knox TA. Clin Infect Dis. 2001;32:1769–75.PubMedCrossRefGoogle Scholar
  56. Siddiqui J, Phillips AL, Freedland ES, Sklar AR, Darkow T, Harley CR. Curr Med Res Opin. 2009;25:1307–17.PubMedCrossRefGoogle Scholar
  57. Sodjinou R, Agueh V, Fayomi B, Delisle H. BMC Public Health. 2008;4:84.CrossRefGoogle Scholar
  58. Stebbing J, Krown SE, Bower M, Batra A, Slater S, Serraino D, Dezube BJ, Dhir AA, Pantanowitz L. Arch Intern Med. 2010;170(2):203–7.PubMedCrossRefGoogle Scholar
  59. Timbo BB, Tollefson L. J Am Diet Assoc. 1994;94:1018–22.PubMedCrossRefGoogle Scholar
  60. Villamor E, Saathoff E, Manji K, Msamanga G, Hunter DJ, Fawzi WW. Am J Clin Nutr. 2005;82:857–65.PubMedGoogle Scholar
  61. Worldwide HIV & AIDS Statistics Commentary. Accessed 19 Sep 2009.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Selby Nichols
    • 1
  • Nequesha Dalrymple
  • Marlon Francis
  1. 1.Department of Agricultural Economics and ExtensionUniversity of the West IndiesTrinidadTobago

Personalised recommendations