Body Composition Analysis Using Radionuclides

  • Themistoklis Tzotzas
  • Georgios Karanikas
  • Gerasimos E. Krassas


Body composition studies were first recorded around the time of the Renaissance, and advances by the mid-twentieth century facilitated growth in the study of physiology, metabolism and different diseases. They are divided into two main groups, i.e. radionuclide and non-radionuclide methods. Simple methods based on body mass index (BMI), skinfolds and circumference measurements along with bioelectrical impedance analysis (BIA) technique are useful tools in everyday clinical practice, while more sophisticated non-radionuclide methods include underwater weighing (UWW), air-displacement plethysmography (ADP) and dual energy X-ray absorptiometry (DXA). In radionuclide methods, total body water (TBW) and total body potassium (TBK) are the two main traditional methods which were considered the ‘reference’ standard for body fat measurement. Computed tomography (CT), magnetic resonance imaging (MRI), positron-emission tomography (PET) scan and neutron activation analysis (NAA) are new methods which provide a detailed description of different tissues. Imaging methods (CT and MRI), in particular, opened a new era in body composition research by offering the possibility of qualitative and quantitative measurements of various tissues such as bone, skeletal mass, hepatic tissue and adipose tissue. CT and MRI estimates of visceral and ectopic adipose tissue using a single slice at L4–L5 level or multiple slices are considered the reference methods for assessing regional fat distributions. PET scan using specific radiopharmaceuticals can visualize active metabolic tissues like brown adipose tissue, which is found primarily in infants and has been considered to be essentially nonexistent and of no physiological relevance in adults. Additionally, this method can follow and provide direct depot-specific measurements of substrates uptake (e.g. insulin – stimulated glucose uptake) in various tissues and organs during insulin resistant states. Therefore, functional imaging with PET scan provides a tool for a better understanding of the physiology of obesity, type 2 diabetes mellitus and related metabolic disorders. This chapter provides an overview of the present status, mainly of radionuclide methods in everyday clinical practice for patients with obesity and related metabolic diseases, as well as in human research.


Adipose Tissue Body Composition Neutron Activation Analysis Total Body Water Bioelectrical Impedance Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Air-displacement plethysmography


Adipose tissue


Brown adipose tissue


Body cell mass


Bioelectrical impedance analysis


Body mass index




Computed tomography


Coefficient of variation


Dual energy X-ray absorptiometry




Free-fat mass






Magnetic resonance imaging




Magnetic resonance spectroscopy


Neutron activation analysis


Positron emission tomography


Positron-emission tomography and computed tomography


Subcutaneous adipose tissue


Total body water


Total body potassium


Total body calcium


Total body nitrogen


Type 2 diabetes mellitus


Underwater weighing


Visceral adipose tissue


Waist circumference


Waist to hip ratio


  1. Archibald EH, Harrison JE, Pencharz PB Am J Dis Child. 1983;137:658–62.PubMedGoogle Scholar
  2. Basu S. Nucl Med Commun. 2008;29:931–3.PubMedCrossRefGoogle Scholar
  3. Boesch C, Kreis R Int J Sports Med. 1997;18(Suppl 4):S310–2.PubMedCrossRefGoogle Scholar
  4. Borkan GA, Gerzof SG, Robbins AH, Hults DE, Silbert CK, Silbert JE Am J Clin Nutr. 1982;36:172–7.PubMedGoogle Scholar
  5. Bray GA, Jablonski KA, Fujimoto WY, Barrett-Connor E, Haffner S, Hanson RL, Hill JO, Hubbard V, Kriska A, Stamm E, Pi-Sunyer FX, Diabetes Prevention Program Research Group. Am J Clin Nutr. 2008;87:1212–8.PubMedGoogle Scholar
  6. Bredella MA, Utz AL, Torriani M, Thomas B, Schoenfeld DA, Miller KK J Appl Physiol. 2009;106:418–22.PubMedCrossRefGoogle Scholar
  7. Cali AM, Caprio S. Horm Res. 2009;71:S2–S7.CrossRefGoogle Scholar
  8. Cannon B, Nedergaard J. Physiol Rev. 2004;84:277–359.PubMedCrossRefGoogle Scholar
  9. Carroll JF, Franks SF, Smith AB, Phelps DR. Obes Surg. 2009;19:47–55.PubMedCrossRefGoogle Scholar
  10. Chaston TB, Dixon JB. Int J Obes (Lond). 2008;32:619–28.CrossRefGoogle Scholar
  11. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. N Engl J Med. 2009;360:1509–17.PubMedCrossRefGoogle Scholar
  12. Demerath EW, Guo SS, Chumlea WC, Towne B, Roche AF, Siervogel RM. Int J Οbes. 2002;26:389–97.Google Scholar
  13. Demerath EW, Reed D, Rogers N, Sun SS, Lee M, Choh AC, Couch W, Czerwinski SA, Chumlea WC, Siervogel RM, Towne B. Am J Clin Nutr. 2008;88:1263–71.PubMedGoogle Scholar
  14. Durnin JV, Womersley J. Br J Nutr. 1974;32:77–97.PubMedCrossRefGoogle Scholar
  15. Ellis KJ. Physiol Rev. 2000;80:649–80.PubMedGoogle Scholar
  16. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Science. 2007;317:1355.PubMedCrossRefGoogle Scholar
  17. Forbes RM, Cooper AR, Mitchell HH. J Biol Chem. 1953;203:359–66.PubMedGoogle Scholar
  18. Foster MA, Hutchison JM, Mallard JR, Fuller M. Magn Reson Imaging. 1984;2:187–92.PubMedCrossRefGoogle Scholar
  19. Fowler PA, Fuller MF, Glasbey CA, Foster MA, Cameron GG, McNeill G, Maughan RJ. Am J Clin Nutr. 1991;54:18–25.PubMedGoogle Scholar
  20. Gallagher D, Kelley DE, Yim JE, Spence N, Albu J, Boxt L, Pi-Sunyer FX, Heshka S, MRI Ancillary Study Group of the Look AHEAD Research Group. Am J Clin Nutr. 2009;89:807–14.PubMedCrossRefGoogle Scholar
  21. Hayes PA, Sowood PJ, Belyavin A, Cohen JB, Smith FW. Med Sci Sports Exerc. 1988;20:303–39.PubMedCrossRefGoogle Scholar
  22. Heymsfield SB. In: Roche AF, editor. Body composition assessments in youths and adults. Report (1–3) of the sixth Ross conference on medical research. Columbus, OH: Ross Laboratories; 1985. pp. 53–8.Google Scholar
  23. Heymsfield SB. Int J Obes. 2008;32:S76–S82.CrossRefGoogle Scholar
  24. Heymsfield SB, McMannus C, Smith J, Stevens V, Nixon DW. Am J Clin Nutr. 1982;36:680–90.PubMedGoogle Scholar
  25. Holsen LM, Zarcone JR, Brooks WM, Butler MG, Thompson TI, Ahluwalia JS, Nollen NL, Savage CR. Obesity (Silver Spring). 2006;14:1028–37.CrossRefGoogle Scholar
  26. Hounsfield GN. Br J Radiol. 1973;46:1016–22.PubMedCrossRefGoogle Scholar
  27. Jebb SA. In: Kopelman PG, Stock MJ (eds) Clinical obesity. Oxford: Blackwell Science; 1998. pp. 18–49.Google Scholar
  28. Jebb SA, Elia M. Int J Obes Relat Metab Disord. 1993;17:611–21.Google Scholar
  29. Johansson L, Roos M, Kullberg J, Weis J, Ahlström H, Sundbom M, Edén Engström B, Karlsson FA. Obes Surg. 2008;18:1297–304.PubMedCrossRefGoogle Scholar
  30. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Nature. 2009;460:1154–8.PubMedCrossRefGoogle Scholar
  31. Kehayias JJ, Zhuang H. Basic Life Sci. 1993;60:49–52.PubMedGoogle Scholar
  32. Kehayias JJ, Heymsfield SB, LoMonte AF, Wang J, Pierson RNJr. Am J Clin Nutr. 1991;53:1339–44.PubMedGoogle Scholar
  33. Kim H, Taksali SE, Dufour S, Befroy D, Goodman TR, Petersen KF, Shulman GI, Caprio S, Constable RT. Magn Reson Med. 2008;59:521–7.PubMedCrossRefGoogle Scholar
  34. Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, Kahn R, Association for Weight Management and Obesity Prevention; NAASO; Obesity Society, American Society for Nutrition; American Diabetes Association. Diabetes Care. 2007;30:1647–52.PubMedCrossRefGoogle Scholar
  35. Knight GS, Beddoe AH, Streat SJ, Hill GL. Am J Physiol. 1986;250:E179–85.PubMedGoogle Scholar
  36. Kullberg J, Brandberg J, Angelhed JE, Frimmel H, Bergelin E, Strid L, Ahlström H, Johansson L, Lönn L. Br J Radiol. 2009;82:123–30.PubMedCrossRefGoogle Scholar
  37. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, Lilienthal Heitmann B, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, M W J Schols A, Pichard C, ESPEN. Clin Nutr. 2004;23:1430–53.PubMedCrossRefGoogle Scholar
  38. Le Carvennec M, Fagour C, Adenis-Lamarre E, Perlemoine C, Gin H, Rigalleau V. Obesity (Silver Spring). 2007;15 78–84.CrossRefGoogle Scholar
  39. Lewis DS, Rollwitz WL, Bertrand HA, Masoro EJ. J Appl Physiol. 1986;60:836–40.PubMedCrossRefGoogle Scholar
  40. Lim S, Son KR, Song IC, Park HS, Jin CJ, Jang HC, Park KS, Kim YB, Lee HK. Obesity (Silver Spring). 2009;17:188–95.CrossRefGoogle Scholar
  41. Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Nature. 1993;366:740–2.PubMedCrossRefGoogle Scholar
  42. Lukaski HC. Am J Clin Nutr. 1987;46:537–56.PubMedGoogle Scholar
  43. Mallard JR. Phys Med Biol. 2006;51:R45–R60.PubMedCrossRefGoogle Scholar
  44. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K. Obes Res. 1995;3:S187–S194.PubMedCrossRefGoogle Scholar
  45. Mattsson S, Thomas BJ. Phys Med Biol. 2006;51:R203–28.PubMedCrossRefGoogle Scholar
  46. Mueller WH, Stallones L. Hum Biol. 1981;53:321–35.PubMedGoogle Scholar
  47. Napolitano A, Miller SR, Murgatroyd PR, Coward WA, Wright A, Finer N, De Bruin TW, Bullmore ET, Nunez DJ. Obesity (Silver Spring). 2008;16:191–8.CrossRefGoogle Scholar
  48. Nedergaard J, Bengtsson T, Cannon B. Am J Physiol Endocrinol Metab. 2007;293:E444–52.PubMedCrossRefGoogle Scholar
  49. Park YW, Heymsfield SB, Gallagher D. Int J Obes Relat Metab Disord. 2002;26:978–83.PubMedCrossRefGoogle Scholar
  50. Phelps ME. Proc Natl Acad Sci USA. 2000;97:9226–33.PubMedCrossRefGoogle Scholar
  51. Pierson RN Jr, Wang J. Mayo Clin Proc. 1988;63:947–9.PubMedGoogle Scholar
  52. Prentice AM, Jebb SA. Obes Rev. 2001;2:141–7.PubMedCrossRefGoogle Scholar
  53. Rohren EM, Turkington TG, Coleman RE. Radiology. 2004;231:305–32.PubMedCrossRefGoogle Scholar
  54. Ross R. Acta Diabetol. 2003;40:S45–S50.PubMedCrossRefGoogle Scholar
  55. Ross R, Shaw KD, Martel Y, de Guise J, Avruch L. Am J Clin Nutr. 1993;57:470–5.PubMedGoogle Scholar
  56. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. Diabetes. 2009;58:1526–31.PubMedCrossRefGoogle Scholar
  57. Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, Imielinska C, Ross R, Heymsfield SB. Obes Res. 2003;11:5–16.PubMedCrossRefGoogle Scholar
  58. Shen W, Punyanitya M, Silva AM, Chen J, Gallagher D, Sardinha LB, Allison DB, Heymsfield SB. Nutr Metab (Lond). 2009;6:17.CrossRefGoogle Scholar
  59. Shimabukuro M. Circ J. 2009;73:27–34.PubMedCrossRefGoogle Scholar
  60. Sjöström L, Kvist H, Cederblad A, Tylén U. Am J Physiol. 1986;250:E736–E745.PubMedGoogle Scholar
  61. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. Int J Obes. 1983;7:437–45.PubMedGoogle Scholar
  62. van der Koory K, Seidell JC. Int J Obes Relat Metab Disord. 1993;17:187–96.Google Scholar
  63. Vartsky D, Ellis KJ, Cohn SH. J Nucl Med. 1979;20:1158–65.PubMedGoogle Scholar
  64. Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, Tolvanen T, Knuuti J, Rönnemaa T, Huupponen R, Nuutila P. J Clin Endocrinol Metab. 2002;87:3902–10.PubMedCrossRefGoogle Scholar
  65. Virtanen KA, Iozzo P, Hällsten K, Huupponen R, Parkkola R, Janatuinen T, Lönnqvist F, Viljanen T, Rönnemaa T, Lönnroth P, Knuuti J, Ferrannini E, Nuutila P. Diabetes. 2005;54:2720–6.Google Scholar
  66. Wagenknecht LE, Scherzinger AL, Stamm ER, Hanley AJ, Norris JM, Chen YD, Bryer-Ash M, Haffner SM, Rotter JI. Obesity (Silver Spring). 2009;17:1240–6.Google Scholar
  67. Wang Z, Wang ZM, Heymsfield SB. Am J Hum Biol. 1999;11:157–65.PubMedCrossRefGoogle Scholar
  68. Yang MU, Wang J, Pierson RM Jr, Van Itallie TB. J Appl Physiol. 1977;43:331–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Themistoklis Tzotzas
  • Georgios Karanikas
  • Gerasimos E. Krassas
    • 1
  1. 1.Department of Endocrinology, Diabetes and MetabolismPanagia General HospitalThessalonikiGreece

Personalised recommendations