Skip to main content

Ovarian Follicle Development and Fertility Preservation

  • Chapter
  • First Online:
  • 1071 Accesses

Abstract

There are strong incentives to better understand the basic physiology of the mammalian ovary. Functioning ovaries have an enormous impact on the health and well-being of women beyond their role in conception. Further, survivorship after treatment for cancer and other life-threatening illnesses is increasing. Maintaining ovarian function during and after treatment is therefore critical, given the health benefits of functional ovaries and the potential desire to conceive. Basic research efforts have resulted in increased access to human ovary tissue, and a number of key technologies moving into widespread clinical use in less than a decade. In this chapter, we review the basic biology of the ovary and ovarian follicle, including recent data on stem cell support of the organ, and clarify the difference between oocyte and follicle maturation in vivo with the clinical goal of “oocyte maturation.” Breakthroughs will continue to result from the interplay among infertility treatment, efforts to preserve fertility, and advances in our understanding of basic ovarian biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Conway GS. Premature ovarian failure. Curr Opin Obstet Gynecol. 2007;9:202–6.

    Google Scholar 

  2. Skillern A, Rajkovic A. Recent developments in identifying genetic determinants of premature ovarian failure. Sex Dev. 2008;2:228–43.

    Article  CAS  PubMed  Google Scholar 

  3. Hadji P. Menopausal symptoms and adjuvant therapy-associated adverse events. Endocr Relat Cancer. 2008;15:73–90.

    Article  CAS  PubMed  Google Scholar 

  4. Billeci AM, Paciaroni M, Caso V, Agnelli G. Hormone replacement therapy and stroke. Curr Vasc Pharmacol. 2008;6:112–23.

    Article  CAS  PubMed  Google Scholar 

  5. Mattar CN, Harharah L, Su LL, Agarwal AA, Wong PC, Choolani M. Menopause, hormone therapy and cardiovascular and cerebrovascular disease. Ann Acad Med Singap. 2008;37:54–62.

    PubMed  Google Scholar 

  6. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  7. Reh A, Oktem O, Oktay K. Impact of breast cancer chemotherapy on ovarian reserve: a prospective ­observational analysis by menstrual history and ­ovarian reserve markers. Fertil Steril. 2008;90(5):1635–9.

    Article  CAS  PubMed  Google Scholar 

  8. Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360:902–11.

    Article  CAS  PubMed  Google Scholar 

  9. Wo JY, Viswanathan AN. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys. 2009;73:1304–12.

    Article  PubMed  Google Scholar 

  10. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the ­postnatal mammalian ovary. Nature. 2004;428(6979):145–50.

    Article  CAS  PubMed  Google Scholar 

  11. Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol. 2009;11(5):631–6.

    Article  CAS  PubMed  Google Scholar 

  12. Pacchiarotti J, Maki C, Ramos T, Marh J, Howerton K, Wong J, et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation. 2010;79(3):159–70.

    Article  CAS  PubMed  Google Scholar 

  13. Tilly JL, Telfer EE. Purification of germline stem cells from adult mammalian ovaries: a step closer towards control of the female biological clock? Mol Hum Reprod. 2009;15(7):393–8.

    Article  PubMed  Google Scholar 

  14. Abban G, Johnson J. Stem cell support of oogenesis in the human. Hum Reprod. 2009;24(12):2974–8.

    Article  CAS  PubMed  Google Scholar 

  15. Thomson TC, Fitzpatrick KE, Johnson J. Intrinsic and extrinsic mechanisms of oocyte loss. Mol Hum Reprod. 2010;16(12):916–27.

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science. 2010;328(5985):1561–3.

    Article  CAS  PubMed  Google Scholar 

  17. Erickson GF. in Endotext.com. (2008).

    Google Scholar 

  18. Gougeon A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. Ann Endocrinol (Paris). 2010;71:132–43.

    Article  CAS  Google Scholar 

  19. Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol. 2010;11:37–49.

    Article  CAS  PubMed  Google Scholar 

  20. Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130:791–9.

    Article  CAS  PubMed  Google Scholar 

  21. Vanhoutte L, De Sutter P, Van der Elst J, Dhont M. Clinical benefit of metaphase I oocytes. Reprod Biol Endocrinol. 2005;3:71.

    Article  PubMed  Google Scholar 

  22. Requena A, Bronet F, Guillén A, Agudo D, Bou C, García-Velasco JA. The impact of in-vitro maturation of oocytes on aneuploidy rate. Reprod Biomed Online. 2009;18(6):777–83.

    Article  PubMed  Google Scholar 

  23. Zhang XY, Ata B, Son WY, Buckett WM, Tan SL, Ao A. Chromosome abnormality rates in human embryos obtained from in-vitro maturation and IVF treatment cycles. Reprod Biomed Online. 2010;21(4):552–9.

    Article  PubMed  Google Scholar 

  24. Curnow EC, Ryan JP, Saunders DM, Hayes ES. Primate model of metaphase I oocyte in vitro maturation and the effects of a novel glutathione donor on maturation, fertilization, and blastocyst development. Fertil Steril. 2011;95:1235–40.

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Ami I, Komsky A, Bern O, Kasterstein E, Komarovsky D, Ron-El R. In vitro maturation of human germinal vesicle-stage oocytes: role of epidermal growth factor-like growth factors in the culture medium. Hum Reprod. 2010;26:76–81.

    Article  PubMed  Google Scholar 

  26. Bowles J, Koopman P. Retinoic acid, meiosis and germ cell fate in mammals. Development. 2007;134:3401–11.

    Article  CAS  PubMed  Google Scholar 

  27. Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet. 2006;38:1430–4.

    Article  CAS  PubMed  Google Scholar 

  28. Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA. 2008;105:14976–80.

    Article  CAS  PubMed  Google Scholar 

  29. Pangas SA, Choi Y, Ballow DJ, Zhao Y, Westphal H, Matzuk MM, et al. Oogenesis requires germ cell-­specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci USA. 2006;103:8090–5.

    Article  CAS  PubMed  Google Scholar 

  30. Choi Y, Ballow DJ, Xin Y, Rajkovic A. Lim homeobox gene, lhx8, is essential for mouse oocyte differentiation and survival. Biol Reprod. 2008;79:442–9.

    Article  CAS  PubMed  Google Scholar 

  31. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305:1157–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao XX, Suzumori N, Yamaguchi M, Suzumori K. Mutational analysis of the homeobox region of the human NOBOX gene in Japanese women who exhibit premature ovarian failure. Fertil Steril. 2005;83:1843–4.

    Article  CAS  PubMed  Google Scholar 

  33. Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81:576–81.

    Article  CAS  PubMed  Google Scholar 

  34. Qin Y, Shi Y, Zhao Y, Carson SA, Simpson JL, Chen ZJ. Mutation analysis of NOBOX homeodomain in Chinese women with premature ovarian failure. Fertil Steril. 2009;91(4 Suppl):1507–9.

    Article  CAS  PubMed  Google Scholar 

  35. Soyal SM, Amleh A, Dean J. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development. 2000;127:4645–54.

    CAS  PubMed  Google Scholar 

  36. Zhao H, Chen ZJ, Qin Y, Shi Y, Wang S, Choi Y, et al. Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am J Hum Genet. 2008;82(6):1342–8.

    Article  CAS  PubMed  Google Scholar 

  37. Donahoe PK, Ito Y, Price JM, Hendren 3rd WH. Müllerian inhibiting substance activity in bovine fetal, newborn and prepubertal testes. Biol Reprod. 1977;16:238–43.

    Article  CAS  PubMed  Google Scholar 

  38. Ueno S, Takahashi M, Manganaro TF, Ragin RC, Donahoe PK. Cellular localization of müllerian inhibiting substance in the developing rat ovary. Endocrinology. 1989;124:1000–6.

    Article  CAS  PubMed  Google Scholar 

  39. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10:77–83.

    Article  CAS  PubMed  Google Scholar 

  40. Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology. 1999;140:5789–96.

    Article  CAS  PubMed  Google Scholar 

  41. Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen AP, Hovatta O. Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod. 2006;21:2223–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kevenaar ME, Meerasahib MF, Kramer P, van de Lang-Born BM, de Jong FH, Groome NP, et al. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology. 2006;147:3228–34.

    Article  CAS  PubMed  Google Scholar 

  43. Seifer DB, Maclaughlin DT. Mullerian Inhibiting Substance is an ovarian growth factor of emerging clinical significance. Fertil Steril. 2007;88:539–46.

    Article  CAS  PubMed  Google Scholar 

  44. Castrillon DH, Miao L, Kallipara R, Horner J, Depinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301:215–8.

    Article  CAS  PubMed  Google Scholar 

  45. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005;8:179–83.

    Article  CAS  PubMed  Google Scholar 

  46. Wullschleger S, Loewith R, Hall MN. Tor signaling in growth and metabolism. Cell. 2006;124:471–84.

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Rajareddy S, Reddy P, Du C, Jagarlamudi K, Shen Y, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development. 2007;134:199–209.

    Article  CAS  PubMed  Google Scholar 

  48. Adhikari D, Flohr G, Gorre N, Shen Y, Yang H, Lundin E, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod. 2009;15:765–70.

    Article  CAS  PubMed  Google Scholar 

  49. Adhikari D, Zheng W, Shen Y, Gorre N, Hämäläinen T, Cooney AJ, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010;19:397–410.

    Article  CAS  PubMed  Google Scholar 

  50. Adhikari D, Liu K. mTOR signaling in the control of activation of primordial follicles. Cell Cycle. 2010;9:1673–4.

    Article  CAS  PubMed  Google Scholar 

  51. Reddy P, Zheng W, Liu K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab. 2010;21:96–103.

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Kawamura K, Cheng Y, Liu S, Klein C, Liu S, et al. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA. 2010;107:10280–4.

    Article  CAS  PubMed  Google Scholar 

  53. Latham KE, Bautista FD, Hirao Y, O’Brien MJ, Eppig JJ. Comparison of protein synthesis patterns in mouse cumulus cells and mural granulosa cells: effects of follicle-stimulating hormone and insulin on granulosa cell differentiation in vitro. Biol Reprod. 1999;61(4):82–92.

    Google Scholar 

  54. Johnson J, Espinoza T, McGaughey RW, Rawls A, Wilson-Rawls J. Notch pathway genes are expressed in mammalian ovarian follicles. Mech Dev. 2001;109:355–61.

    Article  CAS  PubMed  Google Scholar 

  55. Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA. 2002;99(5):2890–4.

    Article  CAS  PubMed  Google Scholar 

  56. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.

    Article  CAS  PubMed  Google Scholar 

  57. Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod. 2005;73(2):351–7.

    Article  CAS  PubMed  Google Scholar 

  58. Pangas SA. Growth factors in ovarian development. Semin Reprod Med. 2007;25:225.

    Article  CAS  PubMed  Google Scholar 

  59. McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol. 1995;9:131–6.

    Article  CAS  PubMed  Google Scholar 

  60. Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol. 1998;204:373–84.

    Article  CAS  PubMed  Google Scholar 

  61. Choi Y, Rajkovic A. Characterization of NOBOX DNA binding specificity and its regulation of Gdf9 and Pou5f1 promoters. J Biol Chem. 2006;281:35747–56.

    Article  CAS  PubMed  Google Scholar 

  62. Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol. 2004;18:653–65.

    Article  CAS  PubMed  Google Scholar 

  63. Hayashi M, McGee EA, Min G, Klein C, Rose UM, van Duin M, et al. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology. 1999;140:1236–44.

    Article  CAS  PubMed  Google Scholar 

  64. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002;87:316–21.

    Article  CAS  PubMed  Google Scholar 

  65. Su YQ, Wu X, O’Brien MJ, Pendola FL, Denegre JN, Matzuk MM, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol. 2004;276:64–73.

    Article  CAS  PubMed  Google Scholar 

  66. McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, et al. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction. 2005;129:473–80.

    Article  CAS  PubMed  Google Scholar 

  67. Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA. 1999;96(13):7282–7.

    Article  CAS  PubMed  Google Scholar 

  68. Lee WS, Otsuka F, Moore RK, Shimasaki S. Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod. 2001;65(4):994–9.

    Article  CAS  PubMed  Google Scholar 

  69. Tanwar PS, O’Shea T, McFarlane JR. In vivo evidence of role of bone morphogenetic protein-4 in the mouse ovary. Anim Reprod Sci. 2008;106(3–4):232–40.

    Article  CAS  PubMed  Google Scholar 

  70. Shupnik MA. Gonadotropin gene modulation by steroids and gonadotropin-releasing hormone. Biol Reprod. 1996;54(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  71. Solc P, Schultz RM, Motlik J. Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol Hum Reprod. 2010;16(9):654–64.

    Article  CAS  PubMed  Google Scholar 

  72. Mehlmann LM. Oocyte-specific expression of Gpr3 is required for the maintenance of meiotic arrest in mouse oocytes. Dev Biol. 2005;288(2):397–404.

    Article  CAS  PubMed  Google Scholar 

  73. Han SJ, Chen R, Paronetto MP, Conti M. Wee1B is an oocyte-specific kinase involved in the control of ­meiotic arrest in the mouse. Curr Biol. 2005;15(18):1670–6.

    Article  CAS  PubMed  Google Scholar 

  74. Masciarelli S, Horner K, Liu C, Park SH, Hinckley M, Hockman S, et al. Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female ­infertility. J Clin Invest. 2004;114(2):196–205.

    CAS  PubMed  Google Scholar 

  75. Brunet S, Maro B. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction. 2005;130(6):801–11.

    Article  CAS  PubMed  Google Scholar 

  76. Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136(11):1869–78.

    Article  CAS  PubMed  Google Scholar 

  77. Sun QY, Miao YL, Schatten H. Towards a new understanding on the regulation of mammalian oocyte ­meiosis resumption. Cell Cycle. 2009;8(17):2741–7.

    Article  CAS  PubMed  Google Scholar 

  78. Shoyab M, McDonald VL, Bradley JG, Todaro GJ. Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA. 1988;85(17):6528–32.

    Article  CAS  PubMed  Google Scholar 

  79. Toyoda H, Komurasaki T, Uchida D, Takayama Y, Isobe T, Okuyama T, et al. Epiregulin. A novel epidermal growth factor with mitogenic activity for rat ­primary hepatocytes. J Biol Chem. 1995;270(13):7495–500.

    Article  CAS  PubMed  Google Scholar 

  80. Shing Y, Christofori G, Hanahan D, Ono Y, Sasada R, Igarashi K, et al. Betacellulin: a mitogen from ­pancreatic beta cell tumors. Science. 1993;259(5101):1604–7.

    Article  CAS  PubMed  Google Scholar 

  81. Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4.

    Article  CAS  PubMed  Google Scholar 

  82. Conti M, Hsieh M, Park JY, Su YQ. Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol. 2006;20(4):715–23.

    Article  CAS  PubMed  Google Scholar 

  83. Panigone S, Hsieh M, Fu M, Persani L, Conti M. Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol Endocrinol. 2008;22(4):924–36.

    Article  CAS  PubMed  Google Scholar 

  84. Fan HY, Liu Z, Paquet M, Wang J, Lydon JP, DeMayo FJ, et al. Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res. 2009;69(16):6463–72.

    Article  CAS  PubMed  Google Scholar 

  85. Sela-Abramovich S, Chorev E, Galiani D, Dekel N. Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology. 2005;146(3):1236–44.

    Article  CAS  PubMed  Google Scholar 

  86. Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  87. Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  88. Cross PC, Brinster RL. Leucine uptake and incorporation at three stages of mouse oocyte maturation. Exp Cell Res. 1974;86(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  89. Colonna R, Mangia F. Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes. Biol Reprod. 1983;28(4):797–803.

    Article  CAS  PubMed  Google Scholar 

  90. Donahue RP, Stern S. Follicular cell support of oocyte maturation: production of pyruvate in vitro. J Reprod Fertil. 1968;17(2):395–8.

    Article  CAS  PubMed  Google Scholar 

  91. Sugiura K, Eppig JJ. Society for Reproductive Biology Founders’ Lecture, Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fertil Dev. 2005;17(7):667–74.

    Article  CAS  PubMed  Google Scholar 

  92. Su YQ, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135(1):111–21.

    Article  CAS  PubMed  Google Scholar 

  93. Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603.

    Article  CAS  PubMed  Google Scholar 

  94. Magoffin DA. Ovarian theca cell. Int J Biochem Cell Biol. 2005;37(7):1344–9.

    Article  CAS  PubMed  Google Scholar 

  95. Woodruff TK. Preserving fertility during cancer treatment. Nat Med. 2009;15(10):1124–5.

    Article  CAS  PubMed  Google Scholar 

  96. Al-Badawi I, Al-Aker M, Tulandi T. Robotic-assisted ovarian transposition before radiation. Surg Technol Int. 2010;19:141–3.

    PubMed  Google Scholar 

  97. Telfer EE, McLaughlin M, Ding C, Thong KJ. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod. 2008;23(5):1151–8.

    Article  CAS  PubMed  Google Scholar 

  98. West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 2007;28(30):4439–48.

    Article  CAS  PubMed  Google Scholar 

  99. Barrett SL, Shea LD, Woodruff TK. Noninvasive index of cryorecovery and growth potential for human follicles in vitro. Biol Reprod. 2010;82(6):1180–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Johnson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Niikura, Y., Johnson, J. (2012). Ovarian Follicle Development and Fertility Preservation. In: Seli, E., Agarwal, A. (eds) Fertility Preservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1783-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1783-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1782-9

  • Online ISBN: 978-1-4419-1783-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics