Additive Models for Quantile Regression: An Analysis of Risk Factors for Malnutrition in India

Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 196)


This brief report describes some recent developments of the R quantreg package to incorporate methods for additive models. The methods are illustrated with an application to modeling childhood malnutrition in India.


Quantile Regression Generalize Additive Model Conditional Quantile Modeling Risk Factor Nonparametric Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fenske, N., Kneib, T., Hothorn, T.: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression (2008). PreprintGoogle Scholar
  2. 2.
    Hastie, T., Tibshirani, R.: Generalized additive models. Statistical Science 1, 297–310 (1986)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman-Hall (1990)Google Scholar
  4. 4.
    Hotelling, H.: Tubes and spheres in n-space and a class of statistical problems. American J of Mathematics 61, 440–460 (1939)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Koenker, R.: Quantile Regression. Cambridge U. Press, London (2005)Google Scholar
  6. 6.
    Koenker, R.: quantreg: A quantile regression package for r (2009).
  7. 7.
    Koenker, R., Mizera, I.: Penalized triograms: total variation regularization for bivariate smoothing. J. Royal Stat. Soc. (B) 66, 145–163 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Koenker, R., Ng, P.: A frisch-newton algorithm for sparse quantile regression. Mathematicae Applicatae Sinica 21, 225–236 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Koenker, R., Ng, P., Portnoy, S.: Quantile smoothing splines. Biometrika 81, 673–680 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Krivobokova, T., Kneib, T., Claeskens, G.: Simultaneous confidence bands for penalized spline estimators (2009). PreprintGoogle Scholar
  11. 11.
    Meyer, M., Woodroofe, M.: On the degrees of freedom in shape-restricted regression. Annals of Stat. 28, 1083–1104 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nychka, D.: Bayesian confidence intervals for smoothing splines. J. of Am. Stat. Assoc. 83, 1134–43 (1983)Google Scholar
  13. 13.
    Pötscher, B., Leeb, H.: On the distribution of penalized maximum likelihood estimators: The lasso, scad and thresholding. J. Multivariate Analysis (2009). ForthcomingGoogle Scholar
  14. 14.
    Powell, J.L.: Estimation of monotonic regression models under quantile restrictions. In: W. Barnett, J. Powell, G. Tauchen (eds.) Nonparametric and Semiparametric Methods in Econometrics. Cambridge U. Press: Cambridge (1991)Google Scholar
  15. 15.
    Wahba, G.: Bayesian ”confidence intervals” for the cross-validated smoothing spline. J. Royal Stat. Soc. (B) 45, 133–50 (1983)Google Scholar
  16. 16.
    Wood, S.: Generalized Additive Models: An Introduction with R. Chapman-Hall (2006)Google Scholar
  17. 17.
    Wood, S.: mgcv: Gams with gcv/aic/reml smoothness estimation and gamms by pql (2009).

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of IllinoisChampaignUSA

Personalised recommendations