Advertisement

Linear Prediction

  • Yuli You
Chapter

Abstract

Let us consider the source signal \(\rm x(n)\) shown at the top of Fig.4.1. A simple approach to linear prediction is to just use the previous sample \(\rm x(n - 1)\) as the prediction for the current sample: \(p(n) = x(n - 1)\cdot\) This prediction is, of course, not perfect, so there is prediction error or residue \(r(n) = x(n) - p(n) = x(n) - x(n - 1)\) which is shown at the bottom of Fig. 4.1. The dynamic range of the residue is obviously much smaller than that of the source signal. The variance of the residue is 2.0282, which is much smaller than 101.6028, the variance of the source signal. The histograms of the source signal and the residue, both shown in Fig. 4.2, clearly indicate that, if the residue, instead of the source signal itself, is quantized, the quantization error will be much smaller.

Keywords

Autocorrelation Acoustics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.
    Cattermole, K.: Principles of Pulse Code Modulation. ILIFFE Books, London (1969)Google Scholar
  2. 9.
    Cutler, C.C.: Differential quantization of communication signals. U.S. Patent 2605361 (1952)Google Scholar
  3. 12.
    Durbin, J.: The fitting of time series models. Review of the International Institute of Statistics 28, 233–243 (1960)MATHCrossRefGoogle Scholar
  4. 17.
    Flanagan, J.L.: Speech Analysis, Synthesis and Perception, second edn. Springer, Berlin (1983)Google Scholar
  5. 38.
    Kimme, E., Kuo, F.: Synthesis of optimal filters for a feedback quantization system. IEEE Transactions on Circuit Theory 10, 405–413 (1963)Google Scholar
  6. 41.
    Levinson, N.: The wiener rms error criterion in filter design and prediction. Journal of Mathematical Physics 25, 261–278 (1947)MathSciNetGoogle Scholar
  7. 63.
    Norbert, W.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT, Cambridge (1964)Google Scholar
  8. 66.
    Oliver, B.M.: Efficient Coding. Bell System Technical Journal 21, 724–750 (1952)Google Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  • Yuli You
    • 1
  1. 1.University of Minnesota in Twin CitiesMinneapolisUSA

Personalised recommendations