Forward Kinematics

  • Reza N. Jazar


Having the joint variables of a robot, we are able to determine the position and orientation of every link of the robot, for a given set of geometrical characteristics of the robot. We attach a coordinate frame to every link and determine its configuration in the neighbor frames using rigid motion method. Such an analysis is called forward kinematics.


Transformation Matrix Coordinate Frame Transformation Matrice Revolute Joint Rest Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Asada, H., and Slotine, J. J. E., 1986, Robot Analysis and Control, John Wiley & Son, New York.Google Scholar
  2. Ball, R. S., 1900, A Treatise on the Theory of Screws, Cambridge University Press, USA.Google Scholar
  3. Bernhardt, R., and Albright, S. L., 2001, Robot Calibration, Springer, New York.Google Scholar
  4. Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North-Holland Publication, Amsterdam, The Netherlands.MATHGoogle Scholar
  5. Davidson, J. K., and Hunt, K. H., 2004, Robots and Screw Theory: Applications of Kinematics and Statics to Robotics, Oxford University Press, New York.MATHGoogle Scholar
  6. Denavit, J., and Hartenberg, R. S., 1955, A kinematic notation for lowerpair mechanisms based on matrices, Journal of Applied Mechanics, 22 (2), 215-221.MATHMathSciNetGoogle Scholar
  7. Fahimi, F., 2009, Autonomous Robots: Mdeling, Path Planing, and Control, Springer, New York.Google Scholar
  8. Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Oxford University Press, London.MATHGoogle Scholar
  9. Mason, M. T., 2001, Mechanics of Robotic Manipulation, MIT Press, Cambridge, Massachusetts.Google Scholar
  10. Paul, R. P., 1981, Robot Manipulators: Mathematics, Programming, and Control, MIT Press, Cambridge, Massachusetts.Google Scholar
  11. Schilling, R. J., 1990, Fundamentals of Robotics: Analysis and Control, Prentice Hall, New Jersey.Google Scholar
  12. Schroer, K., Albright, S. L., and Grethlein, M., 1997, Complete, minimal and model-continuous kinematic models for robot calibration, Rob. Comp.- Integr. Manufact., 13 (1), 73-85.CrossRefGoogle Scholar
  13. Spong, M.W., Hutchinson, S., and Vidyasagar, M., 2006, Robot Modeling and Control, John Wiley & Sons, New York.Google Scholar
  14. Suh, C. H., and Radcliff, C. W., 1978, Kinematics and Mechanisms Design, John Wiley & Sons, New York.Google Scholar
  15. Tsai, L. W., 1999, Robot Analysis, John Wiley & Sons, New York.Google Scholar
  16. Wang, K., and Lien, T., 1988, Structure, design & kinematics of robot manipulators, Robotica, 6, 299-306.CrossRefGoogle Scholar
  17. Zhuang, H., Roth, Z. S., and Hamano, F., 1992, A complete, minimal and model-continuous kinematic model for robot manipulators, IEEE Trans. Rob. Automation, 8(4), 451-463.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Aerospace, Mechanical, and Manufacturing EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations