Processing Light in Reconfigurable Directly Coupled Ring Resonators

Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)


In this chapter, directly coupled ring resonator filters are considered. The state of the art achieved in glass and silicon technology is analyzed in detail, the discussion leading to the ring-size issue and to technological aspects. Advantages and disadvantages are pointed out. Key aspects related to structural disorder are then considered and developed. The impact of fabrication tolerances on the spectral characteristics and on the back-reflection is considered with great attention devoted to the effect of waveguide sidewall roughness enhanced by the ring resonance. The last section concentrates on the use of coupled ring resonator structures as delay lines and experimental results are discussed. In particular, a differential delay line for bit synchronization in DQPSK systems is presented. The chapter ends with an Appendix where the characteristic impedances of dielectric waveguides and coupled ring resonator waveguides are defined and calculated. It is shown that they are equal to the effective index and the group index, respectively.


Coupling Coefficient Group Delay Ring Resonator Free Spectral Range Phase Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marcatili, E.A.J. Bends in optical dielectric waveguides. Bell Syst. Tech. J. 48, 2103–2132 (1969)Google Scholar
  2. 2.
    Yariv, A., Xu, Y., et al. Coupled-resonator optical waveguide: A proposal and analysis. Opt. Lett. 24, 711–713 (1999)CrossRefGoogle Scholar
  3. 3.
    Melloni, A., Martinelli, M. Synthesis of direct-coupled-resonators bandpass filters for WDM systems. J. Lightw. Technol. 20, 296–303 (2002)CrossRefGoogle Scholar
  4. 4.
    Orta, R., Savi, P., et al. Synthesis of multiple-ring-resonator filter for optical systems. IEEE Photon Technol Lett. 7, 1447–1449 (1995)CrossRefGoogle Scholar
  5. 5.
    Madsen, C.K., Zhao, J. H. Optical filter design and analysis. A signal processing approach. Wiley Series (1999)Google Scholar
  6. 6.
    Kokubun, Y. High index contrast optical waveguides and their applications to microring filter circuit and wavelength selective switch. IEICE Trans. on Electronics E90-C(5), 1037–1045 (2007)CrossRefGoogle Scholar
  7. 7.
    Van, V. Circuit-based method for synthesizing serially-coupled microring filters. J. Lightw. Technol. 24, 2912–2919 (2006)CrossRefGoogle Scholar
  8. 8.
    Bertolotti, M., Driessen, A., Michelotti, F. (Eds.) Microresonators as building block for VLSI photonics. American Institute of Physics, NY (2004)Google Scholar
  9. 9.
    Little, B.E., Chu, S. T., et al. Microring resonator channel dropping filters. J. Lightw. Technol. 15, 998–1005 (1997)CrossRefGoogle Scholar
  10. 10.
    Melloni, A., Martinelli, M. The ring-based resonant router. Proceed. ICTON (2003)Google Scholar
  11. 11.
    Sherwood-Droz, N., Wang, H., et al. Optical 4x4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express 16, 15915–15922 (2008)CrossRefGoogle Scholar
  12. 12.
    Fano, R.M. Theoretical limitations on the broadband matching of arbitrary impedances. Research Lab. Electronics, MIT Technical Report 41 (1948)Google Scholar
  13. 13.
    Melloni, A., Morichetti, F., et al. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Opt. Quantum. Electron. 35, 365–379 (2003)CrossRefGoogle Scholar
  14. 14.
    Barwicz, T., Popovic, M. A., et al. Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators. J. Lightw. Technol. 24, 2207–2218 (2006)CrossRefGoogle Scholar
  15. 15.
    Melloni, A., Costa, R., et al. The role of index contrast in dielectric optical waveguides. Int. J. Mater. Prod. Technol. 34, 421–437 (2009)CrossRefGoogle Scholar
  16. 16.
    De Brabander, G.N., Boyd., J.T., et al. Integrated optical ring resonator with micromechanical diaphragm for pressure sensing. IEEE Photon. Technol. Lett. 6, 671–673 (1994)CrossRefGoogle Scholar
  17. 17.
    Worhoff, K., Lambeck P.V., et al. Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices. J. Lightw. Technol. 17, 1401–1407 (1999)CrossRefGoogle Scholar
  18. 18.
    Offrein, B.J., Bona G.L., et al. Wavelength tunable optical add-after-drop filter with flat passband for WDM networks. IEEE Photon. Technol. Lett. 11, 239–241 (1999)CrossRefGoogle Scholar
  19. 19.
    Melloni, A., Costa, R., et al. Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt. Lett. 28, 1567–1569 (2003)CrossRefGoogle Scholar
  20. 20.
    US Patent 6614977, 2/9/2003Google Scholar
  21. 21.
    European Patent, EP1261554, 4/12/2002Google Scholar
  22. 22.
    Leick, L., Zenth, K., et al. Low loss, polarization insensitive SiON components. Proceed. OFC 2004 1, 23–27 (2004)Google Scholar
  23. 23.
    Henry, C.H., Kazarinov, R.F., et al. Low loss Si3N4-SiO2 optical waveguides on Si. Appl. Opt. 26, 2621–2624 (1987)CrossRefGoogle Scholar
  24. 24.
    Porte, H., Gorel, V., et al. Imbalanced Mach-Zehnder interferometer integrated in micromachined silicon substrate for pressure sensor. J. Lightw. Technol. 17, 229–233 (1999)CrossRefGoogle Scholar
  25. 25.
    Gnan, M., Thorns, S., et al. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 44, 115–116 (2008)CrossRefGoogle Scholar
  26. 26.
    Melloni, A., Morichetti, F., et al. Continuously tunable 1-byte delay in coupled-resonator optical waveguides. Opt. Lett. 33, 2389–2391(2008)CrossRefGoogle Scholar
  27. 27.
    Morichetti, F., Ferrari, F. C., et al. Processing light in coupled ring resonators. Integr. Photon. Nanophoton. Research and Applications, Hawaii, July 2009Google Scholar
  28. 28.
    Morichetti, F., Melloni, A., et al. A reconfigurable architecture for continuously variable optical slow-wave delay lines. Opt. Express 15, 17273–17282 (2007)CrossRefGoogle Scholar
  29. 29.
    Schrauwen, J., Van Thourhout, D., et al. Trimming of silicon ring resonator by electron beam induced compaction and strain. Opt. Express 16, 3738–3743 (2008)CrossRefGoogle Scholar
  30. 30.
    Haeiwa, H., Naganawa, T., et. al. Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring Core. IEEE Photon. Technol. Lett. 16, 135–137 (2004)CrossRefGoogle Scholar
  31. 31.
    Littler, I.C.M., Fu, L., et al. Effect of group delay ripple on picosecond pulse compression schemes. Appl. Opt. 44, 4702–4711 (2005)CrossRefGoogle Scholar
  32. 32.
    Ferrari, C., Morichetti, F., et al. Disorder in coupled-resonator optical waveguides. J. Opt. Soc. Am. B 26, 858–866 (2009)CrossRefGoogle Scholar
  33. 33.
    Hughes, S., Ramunno, L., et al. Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 94, 033903 (2005)CrossRefGoogle Scholar
  34. 34.
    Johnson, S.G., Povinelli, M.L., et al. Coupling, scattering, and perturbation theory: Semi-analytical analyses of photonic-crystal waveguides. Proceed. ICTON 1, 103–109 (2003)Google Scholar
  35. 35.
    Gerace, D., Andreani, L.C. Disorder-induced losses in photonic crystal waveguides with line defects. Opt. Lett. 29, 1897–1899 (2004)CrossRefGoogle Scholar
  36. 36.
    Kuramochi, E., Notomi, M., et al. Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev. B 72, 161318 (2005)CrossRefGoogle Scholar
  37. 37.
    Engelen, R.J.P., Mori, D., et al. Two regimes of slow-light losses revealed by adiabatic reduction of group velocity. Phys. Rev. Lett. 101, 103901 (2008)CrossRefGoogle Scholar
  38. 38.
    Marcuse, D. Mode conversion caused by surface imperfections of a dielectric slab waveguide. Bell Syst. Tech. J. 48, 3187–3215 (1969)Google Scholar
  39. 39.
    Little, B.E., Laine, J.-P., et al. Surface-roughness-induced contradirectional coupling in ring and disk resonators. Opt. Lett. 22, 4–6 (1997)CrossRefGoogle Scholar
  40. 40.
    Morichetti, F., Canciamilla, A., et al. Roughness induced backscattering in optical silicon waveguides. Phys. Rev. Lett. 104, 033902 (2010)Google Scholar
  41. 41.
    Canciamilla, A., Torregiani, M., et al. Backscatter in integrated optical waveguides and circuits. Proc. SPIE 7218, 72180 N (2009)Google Scholar
  42. 42.
    Xia, F., Sekaric, L., et al. Ultracompact optical buffers on a silicon chip. Nat. Photon. 1, 65–71 (2007)CrossRefGoogle Scholar
  43. 43.
    Morichetti, F., Melloni, A., et al. Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line. Opt. Express 16, 8395–8405 (2008)CrossRefGoogle Scholar
  44. 44.
    Yang, J., Fontaine, N. K., et al. Continuously tunable, wavelength-selective buffering in optical packet switching networks, IEEE Photon. Technol. Lett. 20, 1030–1032 (2008)CrossRefGoogle Scholar
  45. 45.
    Mookherjea, S., Park, J. S., et al. Localization in silicon nanophotonic slow-light waveguides, Nat. Photon. 2, 90–93 (2008)CrossRefGoogle Scholar
  46. 46.
    Renaudier, J., Bertran-Pardo, O., et al. Impact of temporal interleaving of polarization tributaries onto 100 Gb/s coherent transmission systems with RZ pulse carving. IEEE Photon. Technol. Lett. 20, 2036–2038 (2008)CrossRefGoogle Scholar
  47. 47.
    Ferrari, C., Morichetti, F., et al. Differential polarization delay in coupled-resonator optical waveguides”, to be published by IEEE Photon. Technol. Lett. (2009)Google Scholar
  48. 48.
    Collins, R. E. Field theory of guided waves. IEEE Press Series on Electromagnetic Wave Theory, 605–641 (1991)Google Scholar
  49. 49.
    Schelkunoff, S. A. Impedance concept in waveguides. Quart. Appl. Math. 2, 1 (1944)MathSciNetGoogle Scholar
  50. 50.
    Brews, J. R. Characteristic impedance of microstrip lines. IEEE Trans. Microwave Theory Tech. 35, 30–34 (1987)CrossRefGoogle Scholar
  51. 51.
    Kogelnik, H., Weber, H. P. Rays, stored energy, and power flow in dielectric waveguides. J. Opt. Soc. Am. 64, 174–185 (1974)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations